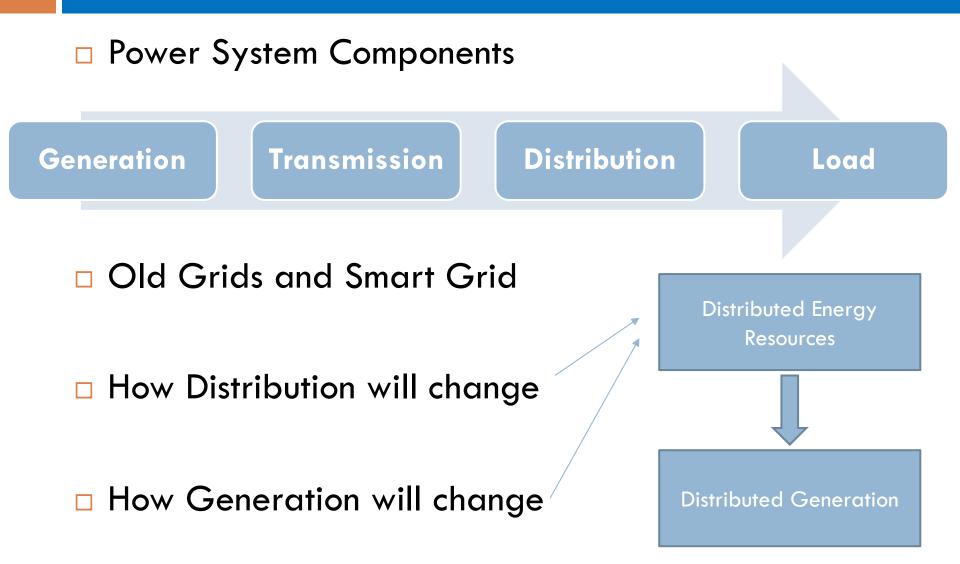


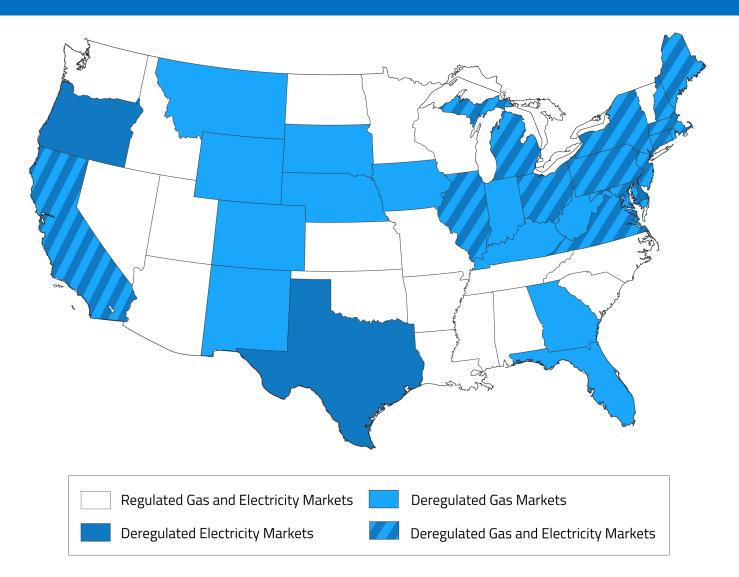
ECONOMICS OF MODERN POWER SYSTEMS


M3 – Distributed Generation

Prof. Luana Medeiros Marangon Lima, Ph.D.

Learning Goals

- □ More on DG
 - History
 - Common technologies
 - Interconnection
- PV study case
 - Show how to use SAM



History of DG

- Started with Public Utility Regulatory Policies Act (PURPA) of 1978
 - Creation of new technologies
 - Spurred research on environmentally preferable technologies that used water, wind, or solar power to produce electricity
 - Challenged the control held by power company managers
 - Began the process of deregulation of electricity sector (generation, transmission, distribution and marketing)


Map of Deregulated Energy Markets

Motivation for DG

- Economically viable
 - Less time to build
 - Put less capital at risk
 - Match the growth

rate of consumption ($\sim 3\%$)

- Improve efficiency of providing electric power
 - Electricity transmission from power plant to user wastes from 4-9% of electricity

DG can provide customers affordable power at a higher level of quality

Types of DG technologies

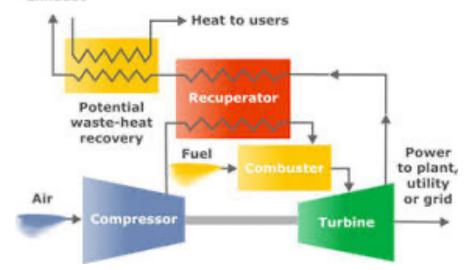
- Distributed generators
 come in three types
 - Induction (or asynchronous) generators
 - Ex: wind turbines and Combined Heat and Power (CHP)

Synchronous generators

Ex: thermal power

Inverters

Ex: solar PV


Table 1. Typical available size per module for DG

Technology	Typical available size
	per power module
Combined Cycle Gas Turbine	35 - 400 MW
Internal Combustion Engines	5 kW - 10 MW
Combustion Turbine	1 - 250 MW
Micro-Turbines	35 kW - 1 MW
Fuel Cells, Phos.Acid	200 kW - 2 MW
Fuel Cells, Molten Carbonate	250 kW - 2 MW
Fuel Cells, Proton Exchange	1 - 250 kW
Fuel Cells, Solid Oxide	250 kW - 5 MW
Battery Storage	500 kW - 5 MW
Small Hydro	1 - 100 MW
Micro Hydro	25 kW - 1 MW
Wind Turbine	200 W - 3 MW
Photovoltaic Arrays (PV Arrays)	20 W - 100 kW
Solar Thermal, Central Receiver	1 - 10 MW
Solar Thermal, Lutz System	10 - 80 MW
Biomass Gasification	100 kW - 20 MW
Geothermal	5 - 100 MW
Ocean Energy	100 kW - 5 MW

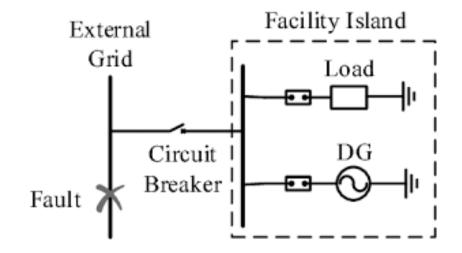
Source: Dulau et al, "Distributed generation technologies and optimization"

Cogeneration Technologies

- Distributed generation resource simultaneous production of heat and electricity
- Permit business to reuse thermal energy that would normally be wasted
 - E.g. Iron and steel, chemical processing, refining, paper manufacturing
 Exhaust

Islanded x Interconnected DG

Islanded DG


- Small generator connected directly to the load and serving that load only
- Reduce load placed on distribution grid at the discretion of the owner
- May increase volatility of the load
- Interconnected DG
 - Connected to distribution grid in addition to a particular load
 - Can cause power to flow in opposite direction
 - Safety and reliability concerns

Why install a grid-connected system?

- Assurance of receiving power from the utility when your system is not producing as much power as you need
- Essential for renewable technologies like solar and wind
- Potential benefit: ability to sell power back to the utility
- □ Net metering (might have a cap)
- Larger generators may stablish power purchase agreements (PPA)
- Off-grid systems make sense for sites far from existing utilities lines

"Intentional" Islanding

- Purposeful sectionalization of the utility system during widespread disturbances to create power "islands"
- The islands can maintain continuous supply of power during disturbances of the main grid

Interconnection Process

- DG system owner *must* obtain written approval from the local utility in the form of an Interconnection Service Agreement and subsequent Authorization to Connect
 - Note: emergency generators are not required to follow this process
- Utility should review your project to make sure there are no negative impacts on the grid
- You may need to incorporate new equipment to protect the reliability and safety of the grid
 - Usually not necessary for small renewable generators

Interconnection Studies

- Power Flow Analysis
- Voltage Analysis
- Short Circuit Analysis
 - determine the magnitude of the currents that flow during an electrical fault
 - Compare values with equipment ratings

Analysis should consider different scenarios for generation and load to account for intermittency and load variability

Rooftop PV Investment Analysis

Study Case

Background

- Solar PVs is the dominant type of distributed renewable energy system
- What's the viability of such an investment for a residential consumer?
- Two components drive the return from PV system
 - Total amount of electricity produced
 - Net value of that production
- Value of PVs is given by number of kWh produced and how much they are worth

Decision process

A PV investment analysis is divided in five steps:

- 1. Estimating System Production
- 2. Assessing System Cost
- 3. Forecasting the Value of Electricity
- 4. Understanding Incentives
- 5. Conducting a Financial Analysis

1 - Estimating System Production

- Site specific solar factors are critical
 - 1. Shading
 - has the most visible negative impact of production
 - vary by season as the sun angle becomes lower in winter
 - 2. Position
 - Panels facing east or west will produce less than same installation facing south
 - 3. Tilt or roof slope
 - Flatter angles increase production in summer but decrease in winter

1 - Estimating System Production

- 4. Temperature
 - Increased temperature increase electrical resistance and consequently reduces efficiency
- Side note: PV panels come with 25 years warranty, but sun degrade PV
 - Production will decline around 0.5% a year
 - i.e., after 25-years, you only have 87,5% of original installed capacity

2- Assessing System Cost

Direct Capital Costs

Panel modules, inverter, hardware

- Indirect Capital Costs or soft cost
 - Installation (most of it), grid interconnection, engineering, permitting, environmental studies and sales tax
- Operation and Maintenance
 - Annual expenses to maintain, service and replace components
 - Usually around \$19 per kW/year for midsize

3- Forecasting the Value of Electricity

- No standardized electricity rate structure
- Typical charges
 - Fixed monthly charge
 - Associated with infrastructure cost
 - PV system will not reduce that!
 - Energy charge
 - Covers the cost of producing energy (kWh)
 - PV install will reduce that
 - Demand charge
 - Covering peak demand requires power plant to provide energy for relatively short durations
 - PV may reduce this fee but often PV does not align with peak demand charges

3- Forecasting the Value of Electricity

- The higher the electricity rate, the greater will be the value of PVs
- Important to consider electricity price increase
 - Usually escalation rates range from 0.5 to 3%
 - Use your beliefs, e.g, if you think environmental concerns might increase prices, use a higher value

4- Understanding Incentives

- Four primary sources of incentive: federal, state, local governments and utility
- □ Why the incentive?
 - Renewable energy and energy efficiency merit financial support
 - Other reasons
 - Federal: Growth of energy independence and environmental responsibility
 - State & utility: reducing energy costs and demand
- Incentives target specific sectors

4- Understanding Incentives

Key residential incentives

- Residential Renewable Energy Tax Credit (RRETC) (30%)
- Net metering policies
 - Credit for excess generation
 - Usually one year cycle
 - Different compensation rates for net excess generation
- Sale of Solar Renewable Energy Credit can generate income for PVs system owners
 - Offset installation cost
 - How do you negotiate it?
 - Owner may entry into an SREC agreement with a broker, or
 - Sell the SRECs to the system developers (some investors simplify by calling it a discount, rebate or refund

5- Conducting Financial Analysis

Financial Return

Payback: number of years for the energy savings from PV to offset initial cost

 $Payback[yr] = \frac{InitialCost(\$)}{AnnualProduction\left(\frac{kWh}{vr}\right)x Value\left(\frac{\$}{kWh}\right) - 0\&M\left(\frac{\$}{vr}\right)}$

- Check if payback is smaller than lifetime of the project
- Problem: too simple for this type of analysis
- Ignores energy price escalation, variable rate electricity pricing, time value of the money, etc

5- Conducting Financial Analysis

- Levelized cost of electricity (LCOE) expresses the cost of electricity produced from a PV system
- LCOE closely related to Net Present Value
 Includes construction and operation cost
- LCOE can be use to compare different electricity sources

Final Remarks

- PV system owners should revise their homeowner policy to include cost of replacement of a PV system in the event of a natural disaster
- When making your decision don't look at the cost alone, think about
 - How much do you value energy independence?
 - How much do you value clean energy?

Let's take a look at SAM

System Advisor Model (SAM) from NREL

Overview of the Model

- □ SAM is an open source project !!
- SAM simulates the performance of
 - photovoltaic with optional storage
 - concentrating solar power
 - solar water heating
 - wind
 - geothermal, and
 - biomass power systems
- Also includes a basic generic model for comparisons with conventional or other types of systems

Overview of the Model

- Does not model off-grid power system with more than one power generator
 - Hybrid Optimization of Multiple Energy Resources (HOMER) could be an option for that
- Desktop application comes with a set of libraries
 - Module parameter
 - Inverter parameters
 - Solar hot water collector
 - Wind turbine power curves, etc

Overview of the Model - Inputs

SAM can automatically download data from

- OpenEU utility rate database
- NREL National Solar Radiation Database
- NREL Wind Integration Datasets
- NREL Biofuels Atkas and DOE Billion-Ton Update (biomass supply)
- Examples of input variable
 - Installation cost, labor, land, O&M
 - Number of modules and inverter
 - Analysis period, discount rate, inflation, tax, power purchase price (utility financing models)
 - Tax and cash incentive

SAM comes with default values for most of these parameters

Overview of the Model

- Performance Models for
 - PVs, CSP, Wind, Solar Water Heating, Biomass Power
- Financial Models
 - Residential and commercial
 - Power generation (PPAs)
 - LCOE calculator
- E.g. for residential projects, SAM report will be
 LCOE
 - Electricity cost with and without the renewable system
 - Electricity saving
 - After-tax net present value
 - Payback period

THANK YOU !

luana.marangon.lima@duke.edu

luana.marangon.lima@duke.edu