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The impact of new technologies within and across industries is only felt through

their widespread diffusion, yet studies of technology diffusion are scarce compared

to other aspects of the innovation process. The electric power industry is one industry

that is currently undergoing substantial change as a result of both technological and

institutional innovations. In this dissertation I examine the economic rationale for the

adoption of smart meters by electric power utilities and the relationship between smart

meters and the evolving electric power industry. I contribute to empirical research on

technology diffusion by studying the early diffusion of smart meters in the US electric

power industry.

Using a panel dataset and econometric models, I analyze the determinants of

both the interfirm and intrafirm diffusion of smart meters in the United States. The

empirical findings suggest multiple drivers of smart meter diffusion. Policy and regu-

latory support have had a significant, positive impact on adoption but have not been

the only relevant determinants. The findings also suggest that utility characteristics and

some combination of learning, cost reductions, and technology standards have been im-

portant determinants affecting smart meter diffusion. I also explore the policy implica-

tions resulting from this analysis for enhancing the diffusion of smart meters. The costs

and benefits of adopting smart meters have been more uncertain than initially thought,

suggesting that some policy support for adoption was premature. The coordination of

policies is also necessary to achieve the full benefits of using smart meters.
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CHAPTER I

INTRODUCTION

This dissertation is an empirical study of the diffusion of a process innovation.

Specifically, it studies the diffusion of smart electricity meters in the electric power in-

dustry of the United States. Smart meters refer to advanced electricity meters based on

digital technology that are capable of recording electricity consumption data in hourly

intervals or less and are also capable of two-way communication between the electric

power utility and the consumer. Smart meters are considered a key technology for build-

ing smart electric power grids that use information and communication technology to

efficiently and reliably match supply and demand in electricity markets. Smart meters

enable time-varying pricing of electricity in retail markets and a more flexible demand

side than has been the case historically. They also provide a basis for further innovation

related to consumer engagement about electricity use.

The research herein adds to the body of knowledge on the diffusion of new tech-

nologies and has important public policy implications for innovation in the electric

power industry. Furthermore, this research examines the adoption of technology in a

heavily regulated industry, and therefore regulation plays a more important role here

than in most diffusion studies. In this chapter I provide definitions and conceptual de-

pictions of innovation and diffusion processes, basic information on smart metering

technology, and specific research questions, all of which will aid in understanding the

research as a whole.
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1.1 The Innovation Process

Innovation can be defined generally as the implementation of a new idea. A new

idea can take the form of a technology or institution, for example. The economics of

innovation evolved from the economic study of science and technology. Science can

be defined as the search for knowledge and technology can be defined as the applica-

tion of scientific knowledge toward certain practical ends, typically in the form of tools

(Audretsch et al. 2002, 156).

Technology also has both hardware and software dimensions. The hardware

dimension refers to an artifact itself, or the physical aspects of a tool. The software di-

mension refers to an artifact’s information base, or the ability to use a tool. Additionally,

the knowledge embedded in technology has both a codified and tacit dimension. The

context within which technology is developed and used, such as the organizational

structure within firms, is another important dimension. These multiple characteristics

of a technology affect the nature of its diffusion, making it less than straightforward

(Rogers 2003, 12-14; Dosi and Nelson 2010, 91–93).

There are arguably three main stages in the process of technological change: in-

vention, innovation, and diffusion. This trilogy, often attributed to Schumpeter (1939),

highlights the difference between invention and innovation. Invention refers to the

generation of new technology whereas innovation refers to the practical use of new

technology. The mere creation of a new technology does not imply that it will be used.

Entrepreneurship, then, plays a crucial role in bridging the invention and innovation

stages. Diffusion refers to the spread of a new technology through an economy. Simi-

larly, technology, if used, does not necessarily diffuse widely (Audretsch et al. 2002; Dosi

and Nelson 2010, 91–93).

Conceptual models of the innovation process provide a useful means for sum-

marizing the stages of the process and their interrelatedness. The early linear model of
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innovation, often attributed to Bush ([1945] 1960), proposed that basic scientific knowl-

edge led to applied scientific knowledge in the form of technology that then led to the

commercialization and diffusion of that technology, captured in the Schumpeterian tril-

ogy. Although the linear model helps frame discussion of the innovation process by

identifying basic stages, it has been critiqued for having little empirical support for its

sequential nature. Practical demands for or actual use of technology, for example, may

necessitate or influence basic scientific research, and innovation may continue over time

as a technology is improved during its diffusion. Nonlinear models of innovation mod-

ify the linear model by, for instance, adding feedback loops among the stages, indicating

the systemic and interactive nature of the innovation process (Kline and Rosenberg 1986;

Rogers 2003, 138; Godin 2006; Balconi, Brusoni, and Orsenigo 2010). Grupp (1998, 19)

provides one such model where innovation does not necessarily proceed sequentially in

time from basic research to technology development to diffusion and where these may

occur in parallel, as depicted in Figure 1. This model highlights the interdependency

and ambiguity of relationships of the stylized stages of the innovation process often

found in the real world. The linear model persists in some form, however, because it of-

fers a simple and useful heuristic for initially thinking about innovation and identifying

key elements of the process (Balconi, Brusoni, and Orsenigo 2010).
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Figure 1. A Nonlinear Model of Innovation. Adapted from Grupp (1998, 19).

The diffusion stage of the innovation process is the focus of this dissertation but

its study should not neglect the interactions that link it to the other stages. Decisions

made early in an R&D process can impact the future path of diffusion (Grupp 1998,

20–21; Rogers 2003, 136–137; Ortt 2010). Diffusion may also be linked to R&D through

supply-demand interactions (Stoneman 1987b, 80–97), and technologies may change and

essentially be invented during their diffusion process (Bijker 1992). Such interactions

may be termed “innofusion” and also highlight the potential importance of user innova-

tion (Fleck 1988; Hippel 2010). The diffusion of technologies may also require R&D on

the part of adopting firms in order for them to adapt technology to their needs, which

can be termed “re-invention” (Rogers 2003, 180–188) or “creative adoption” (Antonelli

2006).
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1.2 The Diffusion Process

Technological diffusion has several characteristics and is itself a process. Diffu-

sion can be defined as the process by which an innovation is communicated through cer-

tain channels over time among the members of a social system (Rogers 2003, 5) or as the

process by which an innovation spreads through an economy over time (Stoneman 2002,

3). Research on diffusion is multidisciplinary, including the fields of economics, mar-

keting, management, sociology, anthropology, communication, and geography (Rogers

2003, 44–45). Each field may focus on different aspects of the diffusion process and use

different methods of analysis, but they all study the same phenomenon and their re-

spective research is relevant to other fields. Crossdisciplinary awareness has grown over

time, but work remains to be done in advancing truly interdisciplinary research (Katz,

Levin, and Hamilton 1963; Warner 1974; Ruttan 1996; Rogers 2003, 40). Although tech-

nological diffusion was well-studied during the early years of the economic study of

innovation, research in this area has waned over time and focus has shifted to topics

such as R&D and technology transfer from universities to industry. Many questions and

avenues of research remain open, and the importance of technological diffusion for ad-

vancing productivity and economic growth and development suggest that it should be

studied more than it currently is (Stoneman 2002, 303–306).

The multidisciplinary research on the diffusion of innovations has identified

four fundamental elements of the diffusion process: the innovation, communication

channels, time (and space), and the social system (Rogers 2003, 11). An innovation can

be characterized by five attributes: relative advantage, compatibility, complexity, trial-

ability, and observability (Rogers 2003, 15–16). There are also three types of adoption

decisions: optional, collective, and authority (Rogers 2003, 28–30). The decision-making

process of adopting an innovation has five sequential stages: knowledge, persuasion,

decision, implementation, and confirmation (Rogers 2003, 169–170). All of these factors,
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in addition to the promotional efforts of change agents, affect the rate of diffusion of an

innovation (Rogers 2003, 221–223). The adoption of innovations can also be discontin-

ued, either from failure to realize benefits or the adoption of superior innovations. For

organizations like firms the decision-making process may be more complex (Gold 1980,

1981), involving agenda setting, matching, redefining and restructuring, clarifying, and

routinizing (Rogers 2003, 421).

New technologies manifest themselves as product innovations or process innova-

tions. The development and marketing of a new technology by a firm, for example, is a

product innovation from that firm’s perspective. If the new technology is a capital good,

then from the perspective of a user firm this technology is a process innovation because

it alters the production process of that firm. The diffusion of process technologies can be

studied at different levels, including international, intranational, interindustry, intrain-

dustry, interfirm, and intrafirm levels. Interindustry diffusion refers to the economy-

wide spread of a technology whereas intraindustry diffusion refers to the spread within

a specific industry. Interfirm diffusion refers to the adoption of technology across firms,

or the extensive margin of use, whereas intrafirm diffusion refers to the intensity of use

of technology within firms, or the intensive margin of use (Stoneman and Battisti 2010).

Important stylized facts about the diffusion of technology are that diffusion

takes time and that rates of diffusion vary across technologies, industries, and countries

(Stoneman 2002, 12–26). It is also the case that many technologies never diffuse. There

are numerous other stylized facts as well (Kemp and Volpi 2008):

(1) Firms can adopt different technologies and the diffusion of one technology influ-

ences the diffusion of another, making diffusion difficult to predict.

(2) Diffusion involves the transfer of information.

(3) Diffusion is more than simply the transfer of information.
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(4) Technologies that are economically attractive will have a faster rate of diffusion

and a higher level of diffusion.

(5) Technologies that are economically attractive do not diffuse instantaneously.

(6) Technologies steadily improve during their diffusion.

(7) Expensive and complex technologies typically diffuse more slowly.

(8) The population of potential adopters changes over time.

(9) Diffusion typically follows an S-shaped curve.

This last fact refers to the measurement of a diffusion process at a macro level that often

results in an S-shaped pattern of growth over time.

Diffusion metrics can be aggregated at the industry or national level or disag-

gregated at the firm level. In the interfirm case diffusion is often measured using the

cumulative number of adopters, as depicted in Figure 2a. Mathematically this interfirm

diffusion metric is given by

mt = ∑ at

where mt denotes the cumulative number of adopters at at time t. An alternative diffu-

sion metric for the interfirm case is given by

Mt =
mt

nt

where Mt denotes the proportion of adopters at time t determined by the number of

current adopters mt and total number of potential adopters nt at time t (Karshenas and

Stoneman 1995, 266).

The S-curve depicts four stages in a successful diffusion process or technological

lifecycle: the introduction of an innovation, early growth in adoption, maturation and

take-off, and saturation. An additional stage, not shown, can occur when a technology

7



becomes obsolete or is superseded by a new, superior innovation and subsequently de-

clines. Viewing diffusion as a multistage process implies that the adoption environment

and the determinants of diffusion can change over time such that diffusion must be

analyzed in the appropriate context and with respect to other diffusion processes. Diffu-

sion emerges at the macro level from the diversity and interaction of adoption decisions

of individual firms at the micro level in a continually changing adoption environment

(Grübler 1991).

Number
of

users

time

N

0

a. Stylized S-curve for Interfirm Diffusion.

Proportion
of

capital
stock

time

1

0

b. Stylized S-curve for Intrafirm Diffusion.

Figure 2. Stylized Diffusion Patterns.

Intrafirm diffusion also typically follows an S-shaped pattern of growth as de-

picted in Figure 2b. Intrafirm diffusion is often measured by the proportion of the cap-

ital stock embodied in a new technology for a particular firm. Mathematically this in-

trafirm diffusion metric is given by

Lit =
Jit

Kit

where Lit denotes the proportion of the capital stock embodied by a new technology for

firm i at time t determined by the amount of new technology capital stock Jit and the
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total capital stock Kit for firm i at time t. An alternative diffusion metric for the in-

trafirm case is given by

Zit =
Xit

Yit

where Zit denotes the proportion of output produced by a new technology for firm i

at time t determined by the output produced by the new technology Xit and the total

output produced Yit for firm i at time t (Karshenas and Stoneman 1995, 266).

Furthermore, adopters may have different characteristics that place them in dis-

tinct adopter categories based on when they adopt, as depicted in Figure 3. Innovators,

for example, may be more tolerant of uncertainty or possess a greater degree of innova-

tiveness than other potential adopters and subsequently adopt earlier. The heterogeneity

of adopter characteristics plays an important role in theories of technological diffusion.

Innovators

Early 
Adopters

13.5%

Early 
Majority

34%

Late 
Majority

34%

Laggards
16%2.5%

x x+sx−sx−2 s

Figure 3. Stylized Categories of Adopters by Innovativeness. Adapted from Rogers (2003,
281), where x denotes mean adoption time and s denotes one standard deviation.

Existing research has highlighted a number of influential determinants in diffu-

sion processes (Stoneman 2002, 52):
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(1) Learning and the spread of information

(2) The cost of adopting new technology

(3) The performance of new technology

(4) Price expectations

(5) Technology expectations

(6) Firm characteristics and their distributions

(7) Discount factors and attitudes toward risk

(8) The extent of product differentiation

(9) The extent of first mover advantages

(10) The impact of other firms’ adoption decisions

(11) The extent to which realized profits generate new investment

Diffusion theory attempts to explain why technological diffusion is not instantaneous.

1.3 Theoretical Perspectives on Technology Diffusion

Although this dissertation is primarily empirical, different theoretical perspec-

tives may influence the interpretation of empirical data and the choice of empirical

methods (Sarkar 1998, 155–158). At the same time, it is possible to use a general em-

pirical model to assess the various theoretical factors in the adoption of technology

(Karshenas and Stoneman 1993). The study of technology diffusion, like the study of

innovation or the economy more broadly, can be approached from two distinct theoret-

ical perspectives: neoclassical or evolutionary economics. Both schools of thought have

developed within the economics of innovation over time as theoretical and empirical

work has progressed. In particular, evolutionary thinking in innovation studies devel-

oped from the empirically observed importance of heterogeneity, bounded rationality,

interaction, learning, and path dependency in innovation processes, aspects which are
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usually not emphasized or easily accounted for in neoclassical thinking (Verspagen and

Werker 2003; Antonelli 2009).

In general, neoclassical and evolutionary perspectives on the nature of economic

reality are significantly different. These different viewpoints are essentially ontologi-

cal, with the neoclassical approach presupposing a closed, mechanistic system and the

evolutionary approach presupposing an open, processual system (Dopfer and Potts

2008, 1–14). The neoclassical perspective typically views the economy in static terms

and emphasizes equilibrium states and exogenous change, using static tools to analyze

the economy. Neoclassical modeling involves assumptions of unbounded rationality

for economic agents where any uncertainity is reduced to risk. These models assume

maximizing behavior where agents find optimal solutions. In contrast, the evolutionary

perspective views the economy in dynamic and evolutionary terms and emphasizes the

disequilibrium and endogenous nature of change and growth, using dynamic tools to

analyze the economy. Evolutionary modeling involves assumptions of bounded rational-

ity for economic agents in truly uncertain environments where the concepts of variety

and selection play an important role. These models assume satisficing behavior where

agents find adequate solutions (Nelson 1995; Grupp 1998, 51–52; Sarkar 1998; Nelson

and Winter 2002; Dosi and Nelson 2010).

For the study of technology diffusion specifically, the neoclassical perspective

views diffusion as a sequence of changing equilibrium states whereby one equilibrium

level of technology adoption transitions to another equilibrium based on exogenous

changes over time affecting the profitability considerations of firms. The evolutionary

perspective views diffusion as a disequilibrium process whereby the technology, firms,

and the adoption environment change continuously and endogenously over time lead-

ing to a self-propagating process through learning and selection pressures. Despite

these differences, both approaches share in common an emphasis on the heterogene-

ity of firms with respect to their needs, capabilities, and other characteristics like size.
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Additionally, the neoclassical approach may be more adequate in certain contexts, such

as relatively certain adoption environments, and the evolutionary approach may be

more appropriate in other contexts, such as relatively uncertain adoption environments

(Sarkar 1998; Nelson, Peterhansl, and Sampat 2004; Dosi and Nelson 2010, 91–93; Stone-

man and Battisti 2010).

1.4 Electricity and Smart Meters

Based on theories of the diffusion of new technologies, this dissertation assesses

empirically the relative importance of various determinants in the diffusion of smart

electricity meters in the United States. Electricity meters, in general, measure the con-

sumption of electricity. Electricity is a form of energy, electrons in motion that carry

electrical charge. It has two components: voltage and current. Voltage refers to the dif-

ference in electrical charge between two points, or the potential ability of electrons to

do work. Current refers to the flow of electrical charge. Electricity is a secondary energy

source generated from primary sources such as coal (nonrenewable) or wind (renew-

able). An important aspect of electricity is that supply and demand must be equal at

every instant because storage is not economically viable with current technology (EIA

2017b).

Electricity has come to be viewed as a general purpose technology, used to

power lighting, electric motors, and other applications. The use of electrical energy has

spawned further innovation especially in the application of electric motors to various

end uses. Electricity is now a basic input to most production processes and has arguably

led to significant productivity improvements over other sources of energy, in industry as

well as in the home. The efficiency of its use and the reliability of its supply is of great

importance for modern economies (Rosenberg 1998; Bresnahan 2010).

Electricity meters have historically measured electrical energy, the total consump-

tion of electricity (i.e., kilowatt-hours, or kWh). Some meters have also measured electric

12



power, the rate at which electricity is being consumed (i.e., kilowatts, or kW). Advanced

meters available today possess the same functions as well as additional capabilities.

They are able to measure and record consumption in real time. Smart meters refer to a

specific type of advanced electricity meter based on digital technology that are capable

of two-way communication between the electric power utility and the consumer. Smart

meters are a product innovation from the meter manufacturer’s perspective but they are

a process innovation from the electric power utility’s perspective. Furthermore, smart

meters are one component of an advanced metering infrastructure that also includes

communication networks and meter data management systems.

Smart meters are considered an enabling technology critical for the development

of a smart electric power grid that efficiently and reliably matches supply and demand

in electricity markets. These advanced meters provide capabilities for time-varying

pricing of electricity, automated meter reading, and automated outage management

among other uses. Smart meters can lead to more efficient use of electricity through

real-time monitoring and analysis of consumption, especially through reductions in

electricity use at times of peak demand when the power grid is most stressed. They can

also aid in the integration of distributed generation and storage resources and electric

vehicles onto the power grid through import-export measurement functions. Smart

meters can have a positive environmental impact as a result of these capabilities. In

addition to these benefits, smart meters also have costs. They are more expensive than

other types of meters and they raise privacy, security, and health concerns (NETL 2008;

EEI 2011).

Smart meters are currently halfway diffused in the United States as measured by

the number of smart meters in use compared to the total number of meters, indicating

that the diffusion process is ongoing (IEI 2016a; EIA 2017a). This should not, however,

discourage a study of the diffusion of smart meters so far. Diffusion processes should be

studied at successive stages in order to arrive at a fuller understanding of their determi-
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nants. It is not guaranteed that smart meters will diffuse completely. This approach also

provides a means to overcome the pro-innovation bias of much diffusion research that

results from exclusively studying successful innovations ex post (Rogers 2003, 112–113).

Therefore, this dissertation studies the early stage in the diffusion of smart meters.

1.5 Research Questions

There are three research questions addressed in this dissertation:

(1) What factors have influenced the interfirm diffusion of smart meters?

(2) What factors have influenced the intrafirm diffusion of smart meters?

(3) What are the policy implications for enhancing the diffusion of smart meters?

I will attempt to answer these questions in two main chapters, one analyzing the deter-

minants of the interfirm and intrafirm diffusion of smart meters and the other assessing

smart meter diffusion policies.

The analysis in this dissertation contributes to empirical research on technologi-

cal diffusion by examining both the interfirm and intrafirm diffusion of a new technol-

ogy in the context of a highly regulated industry. One contribution of this dissertation

is its exclusive focus on diffusion, which is arguably understudied in the innovation

literature compared to the invention and innovation stages. The insights provided can

enhance innovation activities in the electric power industry. Studying the adoption of

smart meters in particular is important because they can help transform retail markets

by providing more opportunities for consumer engagement about electricity consump-

tion and a more flexible demand side. They also support further technological and insti-

tutional innovation in the electric power industry.

Furthermore, public policy in the United States at both the state and federal

levels has supported the adoption of smart meters by electric power utilities, princi-

pally for their role in fostering reductions in peak demand and overall consumption
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with resulting benefits for consumers, the economy as a whole, the environment, and

national security (Rose 2014). The research in this dissertation also contributes to the

small empirical literature on diffusion policy. Additionally, the empirical analysis in

this dissertation is based on a panel dataset created from data provided by the Energy

Information Administration (EIA). The use of panel data in the empirical study of diffu-

sion processes is rare, and the dataset itself is derived from publicly available data that

facilitates reproducible research.1

The remainder of this dissertation proceeds with historical and institutional back-

ground on the US electric power industry and a description of smart metering technol-

ogy (Chapter II), an overview of research on smart meters in the social sciences (Chapter

III), an overview of models of technology diffusion (Chapter IV), and a discussion of

hypothesized determinants of smart meter diffusion in the United States (Chapter V)

that precede an empirical analysis of the early diffusion of smart meters in the United

States (Chapter VI), an assessment of smart meter diffusion policies in the United States

(Chapter VII), and a conclusion that summarizes key findings, provides an international

comparison of smart meter diffusion, and suggests future areas of research (Chapter

VIII).

1. All data analysis in this dissertation was performed with R (R Core Team 2017). Data and R code for
importing, cleaning, and analyzing the data are available upon request.
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CHAPTER II

SMART METERS AND THE US ELECTRIC POWER INDUSTRY

Understanding the historical and institutional context of the US electric power

industry and the capabilities of smart metering technology is crucial for understanding

the technology adoption decisions of electric power utilities and the evolving context

within which smart meter diffusion occurs. In this chapter I provide historical and insti-

tutional background on the electric power industry in the United States and describe the

technological evolution of electricity meters. I describe smart metering technology and

present a comprehensive listing of their costs and benefits. Additionally, I suggest that

electricity meters and the electric power industry have co-evolved over time, mutually

influencing one another.

2.1 The Evolution of the US Electric Power Industry

The structure of the electric power industry in the United States has changed

relatively little over time since the widespread adoption of state regulation by 1914, re-

sulting in local or regional monopoly utility services for electricity supply. The most

substantial changes have occurred in the past two decades, including the restructuring

of electricity markets in a number of states during the 1990s that introduced elements of

competition in the electricity supply chain. The California electricity crisis of 2000–2001,

however, stopped restructuring from spreading further. The industry is undergoing sub-

stantial change in the present as a result of technological change, ecological pressures,

and prior restructuring. Technological progress has occurred steadily in the industry

over time. Perusing the history of the industry reveals that it has been, and continues to

be, shaped by an interplay between technological and institutional innovations.
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The origin of the electric power industry lies in the work of Thomas Edison dur-

ing the late nineteenth century. Edison pioneered not only the technical aspects of elec-

tric lighting and electricity distribution but also the electric power utility as a business

model. He was influenced heavily by the gas-lighting utility business model, his direct

competitor at the time in lighting services. Edison’s Pearl Street station in Manhattan

came online in 1882 as the first central power station linked to a distribution system,

analogous to the gas industry’s distribution network. This was, in effect, the first utility.

Electricity was originally used for lighting and only later were additional applications

developed, primarily machines and appliances utilizing electric motors (Hughes 1983,

18–46; Neufeld 2016, 16–20).

During the early years of the industry competition was fierce and corruption

was common. Private utilities negotiated contracts with municipalities and bribery and

political favoritism often determined which utilities were awarded contracts. Some mu-

nicipalities chose municipal ownership of electricity supply as a means to avoid this

corruption. Municipal ownership also offered a more rapid development of electricity

supply. Municipalities faced similar financial hurdles to privately owned utilities in

the large amounts of upfront capital required, but they also had better access to capital

markets. (Holland and Neufeld 2009; Neufeld 2016, 24–28).

The industry eventually came to desire monopoly status, under the influence of

electric utility entrepreneur Samuel Insull. Insull was motivated by system expansion

and achieving economies of scale to reduce the cost of electricity supply. By integrating

distribution systems over wider geographical areas, Insull came to see state regulation

as a means to achieve certainty and profitability of investments. The industry as a whole

wanted to reduce inefficient and unprofitable competition stemming from the natural

monopoly properties of electricity distribution. The threat of public power from munici-

pally owned utilities was also an influence in accepting state regulation. As the industry

moved in this direction it became subject to regulation at the state level. In 1905 New
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York was the first state to establish a modern public utility commission and adopt reg-

ulation of the industry based on cost recovery through rates of return on capital invest-

ments. This rate-of-return regulation subsequently led to retail rates of electricity based

on the average cost of supply. The economic rationale for regulation of the industry re-

volved around the natural monopoly characteristics of electricity supply. Regulation

applied to a vertically integrated monopoly that implied the bundling of the electricity

supply chain, integrating generation, transmission, distribution, and retailing under one

firm in a given geographic area. This structure spread to most other states within two

decades. Municipal and later co-operative utilities were not regulated in most cases be-

cause their ownership structures were viewed as having the best interest of consumers

in mind. Vertical integration and state regulation of the industry persisted throughout

most of the twentieth century, although not without significant policy changes along the

way. The industry also sustained technological progress and reduced electricity prices

over this time, primarily from efficiency gains and economies of scale in centralized

generation (Hughes 1983, 201–226; Hirsh 1989, 13–86; Hirsh 1999, 11–31; Holland and

Neufeld 2009; Neufeld 2016, 46–95).

Over the course of the first half of the twentieth century utility managers forged

a consensus with politicians, regulators, financiers, electrical manufacturers, and con-

sumers on the benefits of system expansion and interconnection with the oversight of

state regulation. This grow-and-build strategy through technological momentum proved

successful. There were regional differences, however, in the nature of growth with dif-

ferent regions pursuing distinct paths of growth dependent on unique supply, demand,

and political factors (Hughes 1983, 140–174, 363–403, 404–460; Hirsh 1999, 33–54).

The Federal Water Power Act of 1920 created the Federal Power Commission and

encouraged the development of hydroelectric generation projects. Importantly, it laid

the foundation for the federal regulation of interstate wholesale electricity transmission

via the commerce clause of the US Constitution. The Federal Water Power Act of 1930
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and the Federal Power Act of 1935 boosted the regulatory power of the Federal Power

Commission by making it an independent regulatory agency and giving it jurisdiction

over all interstate wholesale transmission and power sales. The Commission was man-

dated to ensure reasonable and just electricity rates. These policies also allowed for the

creation of federally owned utilities and the eventual support of rural electrification

through the Tennessee Valley Authority and other agencies as well as the establishment

of rural co-operative utilities (Holland and Neufeld 2009; Neufeld 2016, 158–160).

The stable structure of the industry began to erode during the 1970s from a num-

ber of factors. The 1973 oil crisis resulted in cultural changes and policy initiatives sup-

porting energy efficiency and conservation, just as many utilities began switching from

coal to oil as a primary fuel source for generating electricity. Additionally, the first nu-

clear power plants were built during this time period and were more expensive than

expected because of cost overruns, delays, and safety regulations. Growth in demand

for electricity was also lower than expected, leading to plant cancellations even after

significant financial investment. Inflation in the overall economy also increased during

this time period along with nominal interest rates, leading to higher borrowing costs.

Technological stasis also occurred for conventional generation sources, reaching lim-

its of thermal efficiency in converting pimary fuels to electrical energy. As a result of

these factors, electricity prices began to rise rapidly throughout the country for the first

time in the industry’s history. Conventional methods of regulation came under attack

for shielding utilities from the full consequences of their investment decisions through

cost recovery mechanisms. These events together sowed the seeds of change. Addition-

ally, during this time the Department of Energy Organization Act of 1977 created the

Department of Energy (DOE) by consolidating energy-related federal agencies. It also

transformed the Federal Power Commission into the Federal Energy Regulatory Com-

mission (FERC), becoming an independent regulatory agency within the DOE (Hirsh

1989, 87–171; Hirsh 1999, 55–70; Holland and Neufeld 2009; DOE 2017a; FERC 2017).
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The National Energy Act of 1978, which was composed of several different initia-

tives, implemented various policy changes such as emphasizing efficiency and stream-

lining the construction of new nuclear power plants. The most significant portion for

the power industry was the Public Utility Regulatory Policies Act of 1978 (PURPA). This

law required states to consider eliminating promotional rate structures such as declining

block rates that decrease the price of electricity as more is consumed and to evaluate

retail rates based on marginal costs. Though initially overlooked, PURPA also allowed

third-party generation of electricity by independent power producers. Utilities were

required by this law to purchase electricity from qualifying facilities that utilized cogen-

eration or renewable fuels, paying the avoided costs of what the utility would have had

to incur to generate the electricity themselves. PURPA was enforced by FERC and al-

lowed state experimentation with different regulatory models in the implementation of

its provisions. PURPA would end up altering the electric power industry in the United

States profoundly and can be considered the first step toward competition in wholesale

electricity markets (Hirsh 1999, 73–100; Holland and Neufeld 2009).

The 1990s saw a move to liberalization of electricity markets, primarily because

of concerns over high electricity prices but also as a means to encourage innovation.

One of the indirect consequences of PURPA was the demonstration that large-scale

power generation was no longer alone in offering low-cost electricity as a result of ad-

vances in cogeneration, gas turbine, and renewable energy technologies. PURPA led

to the Energy Policy Act of 1992 that reinforced the policy shift toward wholesale com-

petition. This law required utilities to wheel, or transmit and distribute, the electricity

generated by exempt wholesale generators, a new kind of independent power producer,

to wholesale customers even if the utility could have supplied these customers itself. It

essentially mandated wholesale competition by separating generation from transmis-

sion. Furthermore, in 1996 FERC Order 888 declared the transmission system a common

carrier, curbing the potential market power of existing utilities by allowing open access
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to transmission networks. Together, these policies embedded competition in wholesale

electricity markets and subsequently allowed wholesale prices to be largely determined

by those markets (Hirsh 1999, 239–260; Holland and Neufeld 2009; FERC 2015b, 39).

Liberalization implied the unbundling of the electricity supply chain and the end

of the utility consensus concerning the natural monoply characteristics of the industry

and the benefits of regulation. It was recognized that generation and retailing could be

unbundled from transmission and distribution. It was also recognized that the regula-

tory framework should persist for transmission and distribution networks that continue

to be natural monopolies. Unbundling generation from transmission, however, created

new problems in the coordination of generation activity to maintain the stability and re-

liability of the power grid. The nature of electric power grids, namely that supply must

meet demand at every instant, requires these activities to be coordinated closely. Under

vertical integration coordination is relatively easy because the monopoly distribution

utility has complete information of and control over generation activity, but this is not

true of independent generators in a competitive market. Unbundling gave rise to inde-

pendent system operators and regional transmission organizations as new institutions

to coordinate market activity and ensure reliability, safety, and low cost. Market power

also became a concern (Hirsh 1999, 119–131, 261–271; Holland and Neufeld 2009; FERC

2015b, 39–40).

Two models of competition in electricity markets were developed during this

period and currently exist in different states. One is the wholesale competition model

where generating firms compete with one another to sell their electricity to distribu-

tion utilities that maintain retail monopolies in their respective service areas. The other

is the customer choice model that typically couples wholesale competition with retail

competition. This model represents a more substantial break from the past by allowing

consumers to choose among electricity suppliers. Some states, however, may allow cus-

tomer choice without having formal wholesale markets. Of those states that adopted the
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customer choice model, only Texas has experienced active retail competition and to a

lesser extent in the Northeast (Joskow 1997; Borenstein and Bushnell 2015).

States have pursued different paths in restructuring their electricity markets. Cal-

ifornia, Pennsylvania, and New Hampshire were among the first states to implement

restructuring in the mid-1990s, but the California electricity crisis of 2000–2001 gave

pause to other states who were considering restructuring. The gains from restructuring

have been regarded as modest, and some states even regretted the decision for a time. In

states that chose not to restructure, traditional vertically integrated markets could still

experience significant changes in some aspects of regulation, such as a move away from

rate-of-return regulation toward performance-based regulation. Revenue decoupling, for

instance, changes incentives for utilities such that increasing their profits is not depedent

on selling more electricity. This approach to revenue regulation removes disincentives

for investing in energy efficiency, although it may pose new problems. Currently, as de-

picted in Figure 4, the United States has a mix of traditionally regulated and liberalized

electricity markets, varying by region and state. States indicated as having wholesale

competition are those largely engaged in formal wholesale markets with independent

system operators or regional transmission operators. This figure is a rough guide as

wholesale markets may only exist in certain regions of a state and customer choice may

only apply to commercial and industrial consumers or have other limitations. Addition-

ally, some states without wholesale competition allow customer choice for industrial

and commercial consumers. Despite the persistence of wholesale markets with fluctuat-

ing wholesale prices determined by marginal costs, time-varying retail prices reflecting

such time-varying wholesale prices have not seen widespread adoption (Holland and

Neufeld 2009; RAP 2000, 2011; EEI 2012; Borenstein and Bushnell 2015).
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Figure 4. Status of Electricity Market Restructuring in 2017. Data from FERC (2015b), EMRF
(2016), and ACCES (2017).

Further changes to the US electric power industry came in the Energy Policy

Act of 2005. This law strengthened the power of FERC by repealing the Public Util-

ity Holding Act of 1935, which effectively eliminated interstate holding companies

that owned multiple utilities. This law also encouraged time-based pricing, demand

response, net metering for distributed renewable generation (such as from solar photo-

voltaics), and incentives for energy efficiency. Although PURPA originally encouraged

time-varying rates, the metering technology available at the time was apparently too

costly for widespread use. But when cheaper technology became available in the 1990s

time-varying prices still did not diffuse. Part of this hesitation may be explained by

potential changes in the distribution of benefits among customer classes as a result of

different rate structures. The law reinforced sections of PURPA by requiring state utility

commissions to again consider time-based rates and the enabling metering technolo-

gies. Furthermore, the law charged FERC with assessing the status of demand response

and advanced metering in the United States and required regulatory bodies in all states

to authorize studies of advanced metering for potential deployment (EEI 2006a, 2006b;
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FERC 2006, 2007, 2008, 2009a, 2011a, 2011b, 2012, 2013, 2014, 2015a, 2016; Joskow and

Wolfram 2012).

Smart meters enable a greater variety of demand response options, which con-

stitutes one of the most important benefits of this technology. Demand response can be

defined as changes in electricity consumption in response to changes in electricity prices

over time. Mechanisms for changing consumption include incentive-based programs,

such as direct load control or interruptible rates, and price-based programs, such as

time-of-use or real-time pricing. Times of high demand and stress on the electric power

grid, the peak load problem, motivates demand response programs. The costs include

the necessary metering infrastructure, other enabling technologies, and management of

demand response programs. The benefits include bill savings, avoided infrastructure

costs, improved reliability, and reductions in market power (FERC 2006; Albadi and

El-Saadany 2008).

Creating a flexible demand side is part of a major recent development in the

industry known as the smart grid. A smart grid combines information and communi-

cation technology with sensing and control technology applied to the power grid in

order to increase the economic efficiency and physical reliability of electricity supply.

The essence of the smart grid, synonomous with grid modernization, is the use of dig-

ital technologies allowing situational awareness through micro-level visibility of grid

operations. In contrast, the use of analog technologies allows only a macro-level view

of grid operations producing limited information and enabling only heuristic decision

making. Smart grid technologies enable real-time monitoring and optimal decision mak-

ing through automated control of the power grid. Sensors placed along the distribution

grid, for example, can detect power outages and associated automation controls can

reroute power in order to minimize the number of consumers affected. Another impor-

tant aspect of the smart grid is the integration of intermittent and distributed generation

and storage resources, often customer-owned, onto the grid. The smart grid enables a
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more transactive grid with two-way flows of both information and electricity (NETL

2009; Joskow 2012).

The concept of a smart grid can be traced back to visions of a power grid with

homeostatic control that balances supply and demand through dynamic pricing and

automation technologies (Schweppe, Tabors, and Kirtley 1981). The use of information

technology in enabling such a vision was predicted to increase the efficiency of energy

use and supply resulting in improvements of energy and capital productivity. Addi-

tionally, it was predicted to aid the decoupling of energy use from economic growth

and to potentially change the structure of utilities and the industry itself (Walker 1985,

1986). The smart grid can also be considered a technological paradigm that orients ad-

vances in electric power technology along certain technological trajectories (Dosi 1982).

Technological and institutional change in the industry is difficult, however, as a result of

technological momentum and regulatory, political, and cultural barriers, biasing some

trajectories over others (Hirsh and Sovacool 2006). The outcomes of these recent techno-

logical and institutional developments are ongoing and yet to be fully seen.

The Energy Independence and Security Act of 2007 encouraged the develop-

ment of the smart grid in the United States. Both this law and the preceding Energy

Policy Act of 2005 supported advanced metering in the form of smart meters. In ad-

dition, this law tasked FERC with assessing the potential of and utilizing demand re-

sponse resources, which it did with an assessment, plan, and implementation proposal

(FERC 2009b, 2010, 2011c). In related efforts, the DOE together with the Environmental

Protection Agency initiated a public-private collaboration to increase commitments to

energy efficiency, resulting in a national action plan for energy efficiency (DOE/EPA

2006, 2008). Furthermore, the American Recovery and Reinvestment Act of 2009 (Re-

covery Act), passed in response to the Great Recession that began in 2007–2008, funded

grid modernization programs administered by the DOE and originally authorized by

the Energy Independence and Security Act of 2007. The Smart Grid Investment Grant
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(SGIG) program subsidized deployment of smart grid technologies and the Smart Grid

Demonstration Program (SGDP) subsidized R&D for smart grid technologies. Addi-

tional policies are needed to continue incentivizing investment in smart grids, with

special care given to regional differences in power grid characteristics (NSTC 2011; Guo,

Bond, and Narayanan 2015; DOE 2017b).

During the time since restructuring began, the environmental costs of gener-

ating electricity have gained prominence in public policy debates. Although local air

and water pollution have always been a concern in the industry, attention has shifted

to greenhouse gas emissions associated with the burning of fossil fuels and resultant

global warming. Comprehensive climate change legislation, such as implementation of

a carbon tax as a means to monetize the negative externalities, has not seen success at

the federal level, and the recent Clean Power Plan is a regulatory approach from the ex-

ecutive branch to mitigate greenhouse gas emissions in the power industry. The rise of

clean, renewable generation from solar and wind through policy support and declines

in their costs of production has led to new technical and economic challenges as a result

of their intermittent and distributed nature. In addition, energy storage and electric ve-

hicles may also diffuse more widely in the future for similar reasons, posing additional

challenges. Another benefit attributed to the smart grid is its ability to address such

challenges and thus reduce the ecological footprint of the power industry. These issues

will collectively shape the structure of and technological change in the industry going

forward (EPRI 2008b; Hledik 2009; NETL 2011; Borenstein and Bushnell 2015).

The recent history of the US electric power industry highlights a theme of de-

mand response as a means to address the peak load problem and engage customers in

new markets. The desire to expand the participation of the demand side in electricity

markets also includes pushes for retail electricity prices to reflect the dynamic prices

determined in wholesale markets. Such time-varying rates are hoped to incentivize

changes in consumption behavior, especially at times of peak demand. In 2011 FERC Or-
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der 745 declared demand response to be equivalent to a generation source in wholesale

markets, equating reductions in demand with avoided generation and valuing it as such.

This represents an important change in market rules that has caused greater attention

given to demand response resources. The bright line dividing federal and state regula-

tion is also increasingly becoming blurred as a result. Technological change is required

to make the demand side more flexible, and metering technology is especially crucial for

enabling demand response programs (Rose 2014; Panfil 2015).

2.2 The Evolution of Electricity Meters

Technology and industrial structure often co-evolve (Hughes 1987; Nelson 1994).

The evolution of the US electric power industry is tied to the evolution of electricity

metering technology in a co-evolutionary process. Changes in the industry have led to

changes in metering technology and changes in metering technology have led to—and

are currently leading to—changes in the industry. The diffusion of certain metering

technologies, then, is dependent in part on the overall form and context of the industry.

Electricity meters, in general, measure the consumption of electricity. Metering

technology is integrally tied to the structure of retail electricity rates, and rate structures

are ultimately limited by the capabilities of electricity meters. Retail rate structures can

take different forms and are typically volumetric charges based on kilowatt-hours (kWh)

of electricity consumed. They may also contain invariant components in the form of

fixed charges. Rates often differ by customer class as well, which include residential,

commercial, industrial, and sometimes others. Retail rates can be static or dynamic.

Static rates are predetermined and may only change seasonally. In conventionally reg-

ulated markets static rates are determined through regulatory ratemaking processes

whereas in markets with retail competition static rates are determined by retailers. Static

rates include flat rates and time-of-use (TOU) rates. Flat rates are based on total con-

sumption, irrespective of the time of day, in the form of a price per kWh consumed. Flat
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rates can also be used in combination with a demand charge, a fee based on the maxi-

mum electric power demanded by a consumer at any instant. TOU rates refer to prices

that vary over the course of a day but are predetermined and do not change in real time.

A simple TOU rate structure combines a low rate for the off-peak period and a high

rate for the on-peak period. The motivation behind TOU rates, and time-varying rates

in general, is to incentivize customers to reduce consumption during periods of peak

demand. A more complex rate structure may include rates for mid-peak shoulder peri-

ods as well. Demand charges can also be added to a TOU rate structure (Capehart and

Storin 1983; Borenstein, Jaske, and Rosenfeld 2002; Lazar and Gonzalez 2015).

Dynamic rates are prices that change in real time. Unlike TOU rates they are not

predetermined. Dynamic pricing is intended to reflect marginal system costs influenced

by actual on-peak and off-peak times of demand. Real-time pricing (RTP) is the ultimate

dynamic pricing with prices changing in real time (typically defined as each hour). Criti-

cal peak pricing (CPP) is a special type of dynamic pricing used to incentivize demand

reduction during times of expected high demand, such as very hot days during the sum-

mer. CPP is typically determined a few days in advance and limited to a certain number

of hours per year. CPP can be used in combination with any other type of rate structure

(flat, TOU, or RTP). Dynamic rates can also be combined with demand charges. While

more dynamic rates entail more risk, they also entail potentially more reward. The mo-

tivation for using time-varying prices is to increase the economic efficiency of electricity

markets by aligning prices with marginal costs, curb potential market power in competi-

tive markets, and increase economic equity by reducing cross-subsidies from those who

consume more during off-peak times to those who consume more during on-peak times

(Borenstein, Jaske, and Rosenfeld 2002; Lazar and Gonzalez 2015).

Early electric utilities charged their customers based on the number of lamps in-

stalled, independent of the actual consumption of electricity. For a short period this was

reasonable because of the nature of users’ needs at the time—primarily lighting in the
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early evening. As the adoption of electric lighting and the uses for electricity expanded,

however, it became clear that pricing of electricity should be based on consumption.

This led to a demand for direct-reading electricity meters that measured total energy use

(Bowers 1982, 193–201; Brown 1985; Bowers 1990, 373–377; Neufeld 2016, 34–41).

There was an intense debate within the early power industry over the most ap-

propriate rates to charge consumers, even before economists turned their attention to

the issue (Hausman and Neufeld 1984; Hausman and Neufeld 1989; Neufeld 2016, 34–

41). Historically, residential and commercial rates have typically been flat whereas in-

dustrial rates have typically been more dynamic. Regardless, the pricing of electricity

based on consumption requires a device to measure consumption, and a more complex

rate structure requires a more sophisticated meter. Subsequently, the actual benefits of

different rate structures are dependent upon, in part, the underlying costs of the en-

abling metering technology (Capehart and Storin 1983; Lazar and Gonzalez 2015).

The population of electricity meters is diverse, but only a few types of meters

have been selected and widely used in the industry. In some cases, specific types of me-

ters are used for very specific applications, such as special meters for use in high voltage

applications. After moving to price electricity based on consumption rather than the

number of lamps, Edison developed a meter based on an electrolytic cell. Other inven-

tors and companies developed different kinds of meters during these early years, which

were mostly analog, electromechanical devices. The industry desired practical instru-

ments that were portable, quick and easy to read, and reliable. The Aron meter, the first

electricity meter with direct reading of measurements, was based on pendulum clocks

and wires that interacted with the electricity supply to measure consumption. Arthur

Wright, a British pioneer in the power industry, invented the first recording meter in

1886 to monitor electric load, using paper pulled by clockwork and marked by a pointer

connected to a meter (Bowers 1982, 193–201; Brown 1985; Bowers 1990, 373–377).
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The Thomson meter, invented in 1882, was the first motor meter, where the total

number of revolutions of a disc driven by an electric motor and restrained by an eddy

current break measured electricity consumption. This meter was intended for direct cur-

rent (DC) systems although it could be modified for alternating current (AC) systems.

Induction motors were later developed that proved more convenient for use in meters

on AC systems, after the “battle of the systems” resulted in the widespread adoption of

alternating current. The Shallenberger meter, invented in 1898, incorporated an induc-

tion motor that drove a disc in a similar fashion. This meter design was subsequently

improved upon and developed into the standard, analog watt-hour meter that became

the working horse meter of the industry for decades. Measurements of total consump-

tion are read manually via a row of dials (Bowers 1982, 200–201; Hughes 1983, 106–139;

Brown 1985; Bowers 1990, 373–377; Neufeld 2016, 28–34).

During the debates surrounding rate structures in the early twentieth century,

it was emphasized that there must be a practical way to implement time-varying rate

structures. There were, in fact, analog meters available at this time that were capable

of measuring electricity consumption during different time periods that could be used

to levy simple TOU rates. This type of meter took the form of a basic Shallenberger

meter with an additional register and a clock that would switch between the two reg-

isters based on predetermined time periods. A demand meter could also be attached

to measure maximum power demand. More sophisticated designs were also available.

Although meters capable of supporting TOU pricing were available during the early

years of the industry, TOU rates were not adopted despite awareness of the peak load

problem. Demand charges were adopted instead, not as a second-best approximation

of peak-load pricing but arguably as a means to price discriminate and to compete with

self-generation in industry. This pricing strategy also supported a growth strategy for

the large, centralized vision of the industry. The reasoning behind the widespread adop-

tion of demand charges, then, as well as the higher costs and inflexibility of more com-
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plex meters, essentially explain the nondiffusion of these early TOU meters (Capehart

and Storin 1983; Brown 1985; Neufeld 1987; Yakubovich, Granovetter, and McGuire 2005;

Neufeld 2016, 34–41).

The electromechanical watt-hour meter has been used extensively in the resi-

dential class of consumers as well as the commercial and industrial classes, where it

has often been paired with a demand meter. This type of meter was selected because

of its relatively low purchase and maintenance costs, high reliability, and 25–30 year

rated life. Electromechanical meters, still in use today although no longer commercially

available, eventually gained competition from electronic meters as a result of advances

in electronic and computing technology during the mid-twentieth century. The advent

of solid-state technology, integrated circuits, and microprocessors led to the develop-

ment of electronic meters utilizing digital signal processing. These meters originally

performed the same functions as the standard analog electromechanical meter, measur-

ing and providing a direct reading of total electricity consumption. Electronic meters

were first used for large commercial and industrial customers who were subject to more

complex rate structures than residential customers and required finer granular data

on their electricity consumption. As the costs of electronic meters decreased their use

spread to all customer classes (Capehart and Storin 1983; Brown 1985; EEI 2006a, 5–7;

EEI 2011, 7–8).

The first generation of electronic meters still needed to be read manually via a

digital display. The invention of automatic meter reading (AMR) in the 1970s, however,

changed this. AMR meters combine an electronic meter with a communication module.

This allows for the one-way communication of consumption data, either to a remote col-

lector in a utility employee’s vehicle or via a fixed network to a central location. Older

electromechanical meters could also be retrofitted to AMR meters with a drop-in com-

munication module at low cost. This technology helped automate the meter reading and

billing process through telemetry. The communication system can either be a telephone
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system, radio frequency (RF) system, low-frequency ripple system using power lines,

or high-frequency power line carrier system, each of which have their advantages and

disadvantages. AMR also enables tamper and outage detection. AMR can be considered

one of the first steps toward a smart grid in that it combines information and commu-

nication technology with the power grid (Capehart and Storin 1983; FERC 2006, 20; EEI

2011, 7–12).

Electronic meters gradually evolved in the 1980s and 1990s from AMR into what

have come to be known as smart meters. As microproccesor technology improved, elec-

tronic meters became capable of measuring and recording data on electricity consump-

tion in separate time intervals (typically in 60-, 30- or 15-minute intervals). The micro-

processor enabled easy programing of register schedules for use with time-varying

rate programs. These meters also gained the ability to measure and record maximum

power demand and could be programmed in a similar manner. In addition, they were

capable of being programmed for complicated time-varying rates that could change

over the course of a year based on a seven-day time clock and an annual calendar clock.

They could also be connected to tape recorders for recording consumption data, but this

proved too costly to implement widely. Memory storage was an initial limitation for

the capabilities of electronic meters but subsequent improvements in memory storage

technology overcame this barrier to increased functionality. These metering technolo-

gies have also influenced the development of digital display devices that allow active

monitoring of consumption and direct and indirect load control systems, including au-

tomated energy management systems containing preprogrammed instructions based

on preferences and prices that can manage a consumer’s electricity load automatically

through microcontrollers. Importantly, these electronic meters were upgraded to func-

tion with two-way communication (Capehart and Storin 1983; Sioshansi 1991; EEI 2011,

7–8).
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Figure 5. An Electromechanical Meter.

Figure 6. A Smart Meter.

A smart meter can be defined as a digital electricity meter capable of measur-

ing and recording interval data combined with two-way communication capabilities.

Smart meters are part of a smart meter system that has come to be known as advanced

metering infrastructure (AMI). AMI is a system composed of smart meters, communi-

cation systems, and meter data management systems. The diffusion of smart meters
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encompasses the diffusion of AMI, a set of complementary innovations. The presence

of a two-way communication system via a fixed network implies that a utility can both

send and receive messages to and from a customer’s meter. The additional line of com-

munication from the utility to the customer enables direct load control by utilities when

combined with gateway networks and microcontrollers on machines and appliances.

It also enables remote on-demand reads, remote meter programming, remote service

switching, and remote switching of registers in a multiregister meter, which is useful

for implementing time-based rates. In addition to electricity consumption smart meters

can measure power demand and voltage. These measurements provide useful infor-

mation to utilities for managing distribution grids Furthermore, the specific choice of

the communication network architecture may depend on population density as well

as a utility’s vision for the smart grid because it can serve other functions apart from

metering, such as distribution automation (NETL 2008; EEI 2011; MITEI 2011, 132–137).

Table 1 compares the capabilities of electromechanical, AMR, and smart meters.

In sum, smart meters are a capital-embodied process innovation with distinct advan-

tages over previous metering technologies. They are multi-function tools providing

information-rich operational capabilities. Smart meters are also labor-saving and poten-

tially capital-saving investments. Furthermore, the evolution of AMI from AMR and

previous technologies exemplifies how technological change is combinatorial, incre-

mental, and cumulative, often leading to greater complexity and capability over time

(Rosenberg 1979; Arthur 2009).
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Table 1. Capabilities of Metering Technologies.

Meter Type Capabilities

Electromechanical Manual reads

Automatic meter reading (AMR) Automated reads, outage detection,
tamper detection

Advanced metering infrastructure (AMI) Interval data and time-varying rates,
power quality data, import/export
functions, remote on-demand reads,
remote service switching, remote
meter programming

Note: Additive capabilities from electromechanical to AMI.

From this description of the evolution of metering technology it is clear that both

the needs of the power industry on the demand side and the technological opportunities

offered by microprocessors on the supply side have shaped the direction of metering

technology advancement. The barriers to implementing time-varying rates have not

been technological but rather economic and behavioral. Uncertainties as to the actual

response of consumers to time-varying prices, for example, have been an important bar-

rier in addition to the costs of implementation and the regulatory approval process for

investor-owned utilities. The economic rationale for smart meters depends on various

factors. Smart meters have initially been more expensive than less advanced meters and

there has been some uncertainty as to their rated life and their maintenance and repro-

gramming costs. If the relative advantage of smart meters does not provide sufficient

benefits compared to costs, then their adoption and deployment may not be economical.

2.3 The Economic Rationale for Smart Meters

Smart meters offer many benefits over the electronic and electromechanical me-

ters that preceded them, though they impose new costs as well. The costs and benefits

of smart meters are diverse and they are distributed across multiple stakeholders.
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2.3.1 Costs

Smart meters have four major elements of cost: expense, privacy, security, and

health. Because of their capabilities smart meters incur a greater financial cost relative

to less advanced meters, though their price has fallen over time. Furthermore, smart

meters cannot realize their full benefits unless part of an AMI system, which requires

the installation and associated costs of communication systems and meter data manage-

ment systems. In some cases utilities can upgrade from AMR to AMI relatively easily, if

a fixed network communication system was previously selected, by replacing AMR me-

ters with smart meters and making incremental upgrades to the system. In other cases

they have to build up the entire communication system. This issue will impact the total

cost of deploying AMI such that the prior diffusion of AMR may impact the diffusion

of AMI. Additionally, different deployment strategies, such as full, replacement, or tar-

geted deployment, may incur different costs (Levy, Herter, and Wilson 2004; NETL 2008;

EEI 2011).

Smart meters also impose potential costs to privacy, stemming from consump-

tion data. Consumers may not be comfortable with utilities or other parties having ac-

cess to detailed data on their electricity consumption. Such data can be used to identify

the use of individual appliances and home or work patterns. The ownership of data is a

point of issue. Related to privacy concerns, there are also security concerns with respect

to unauthorized access to meters and their recorded data. Smart meters have physical

ports to access data and are also networked with communication systems, both of which

can potentially result in unauthorized access. Efforts have been made to protect data,

however, such as increased endpoint security as well as data encryption. The National

Institute for Standards and Technology (NIST) has established security guidelines and is

collaborating with meter manufacturers and the industry as a whole to produce secure

meters and networks. The Energy Independence and Security Act of 2007 empowered
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NIST as the national coordinator for smart grid technology standards and cybersecurity

guidelines. The North American Electric Reliability Corporation, whose mission is to en-

sure grid reliability, has also issued cybersecurity standards, and the American Recovery

and Reinvestment Act of 2009 also increased cybersecurity measures through its smart

grid programs (NETL 2008; EEI 2011; MITEI 2011, 197–234).

Smart meters that use wireless transmission for communication, leading to RF

exposure, can potentially impose health costs. Scientific studies have shown, however,

that RF exposure from smart meters is negligible. RF exposure is regulated by standards

set by the Federal Communications Commission. Smart meters fall under a low power,

unlicensed category, similar to wireless Internet routers. They also emit substantially

less RF exposure than cell phones. Such devices have generally not been found to pose

negative effects on human health. Nevertheless, all such devices undergo a testing and

certification process with the Commission. Furthermore, smart meters, like all previous

meters, are typically installed on the exterior of homes and businesses facing away from

living and working spaces and in a partially shielded enclosure. Any exposure also oc-

curs only when the RF device is in operation, which is usually no more than 15 minutes

in total per day. Still, RF exposure from smart meters, if it occurs at all, has been shown

to be well within legal limits (NETL 2008; EEI 2011).

Although most of these costs are uncertain and difficult to quantify, they may

qualitatively impact the assessment of the optimal rate of smart meter diffusion. Their

adoption may be premature if these issues have not been adequately addressed. The

most certain and established costs of smart meters are the financial costs.

2.3.2 Benefits

The benefits of smart meters are multidimensional and intertwined with the ben-

efits of smart grids. These benefits can be categorized based on the various stakeholders

that they impact, including utilities, consumers, and society as a whole. The benefits can
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also be divided between operational and nonoperational benefits with respect to utilities’

needs and their management of the power grid. Framing the benefits of smart meters in

terms of operational and nonoperational benefits is useful because it naturally leads to a

discussion of smart meter diffusion policy from a market failure perspective in terms of

private and social costs and benefits (Levy, Herter, and Wilson 2004).

Utilities benefit across the supply chain from the deployment of smart meters.

For customer service and related field operations, smart meters reduce the cost of meter

reading through the elimination of meter reading positions and associated expenses.

They also help automate the billing process and reduce expenses in this area as a result,

such as through reductions in billing errors. Smart meters can also reduce costs asso-

ciated with service connections and disconnections through remote switching. Smart

meters can reduce call center activity and associated costs through improved customer

engagement and automated outage detection. Additionally, smart meters can detect

meter tampering and electricity theft. Another byproduct of the data collected by smart

meters is reduced costs for load research used in marketing and forecasting demand

(NETL 2008; EEI 2011; MITEI 2011, 132–137).

For managing the power grid, advanced metering infrastructure enables utilities

to engage in advanced distribution operations, advanced transmission operations, and

advanced asset management, all of which are aspects of a smart grid and can lead to

cost reductions. Power quality data collected by smart meters also aids utilities in im-

proving the reliability of the distribution grid. As part of these smart grid operations,

smart meter data benefits both transmission and distribution grids by improving trans-

former load management and capacitor bank switching. Smart meter data can also be

used to develop new revenue streams through monetizing the flow of information and

to improve efficiency of supply and demand, reliability of service, and grid system de-

sign and planning (NETL 2008; EEI 2011; MITEI 2011, 132–137).
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Consumers of electricity benefit from smart meters through improved relation-

ships with their utility resulting from access to finer consumption data that can be used

for energy management purposes and engagement about energy use. Consumers also

benefit from more accurate billing, a greater variety of rate options, improved reliability

and outage restoration, and access to power quality data. Furthermore, smart meters

can act as an interface between the power grid and the loads and distributed genera-

tion and storage resources of consumers. Smart meters are capable of net metering, for

example, through measuring power inflow and outflow. Depending on public policy,

this may incentivize consumers to also become producers of electricity (NETL 2008; EEI

2011; MITEI 2011, 132–137).

Additionally, smart meters enable consumers to participate in demand response

programs and related markets. For residential consumers smart meters can be con-

nected to home area networks that communicate information to household appliances.

Consumers can program their preferences so that appliances such as washers and dry-

ers only operate during certain time periods or depending on prices. Such activities can

reduce consumers’ bills. Consumers can also voluntarily allow utilities direct control

over certain appliances typically in exchange for bill credits. Furthermore, insofar as

smart meters reduce costs to the utility they also put downward pressure on electricity

prices, from which consumers benefit. Some of these benefits, though, depend on policy

and regulatory action and may not be available to all consumers (NETL 2008; EEI 2011;

MITEI 2011, 132–137).

Society as a whole benefits from the use of smart meters principally through

the demand response that they enable, by shifting consumption to off-peak times and

lessening the peak load problem. Effective demand response can help avoid the cost of

building excess capacity in peak generation and transmission and distribution networks.

Blackouts can also be avoided through dynamic pricing and other demand response pro-

grams during periods of high demand, leading to significant financial savings through
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avoidance of business productivity losses and breakdowns in other dependent sys-

tems like water distribution. Smart meters can also help integrate distributed energy

resources like rooftop solar onto the grid that can benefit society through innovation

and cleaner energy generation. Reductions in consumption during peak times and for

overall energy use as well as increased generation from cleaner, distributed resources

can also benefit society through improved environmental quality (NETL 2008; EEI 2011;

MITEI 2011, 132–137).

Similar to the costs, some of the benefits of smart meters are more certain than

others. Many of the benefits associated with the adoption of smart meters relate to con-

sumption patterns and demand response. Yet it is uncertain how beneficial demand

response programs can be because their effectiveness depends on how consumers ac-

tually respond to time-varying prices and other incentives. This cannot be predicted

perfectly. Demand response is important because it opens up new markets and potential

avenues of innovation in the electric power industry, another benefit of smart meters.

Smart meters are a key technology in the development of smart grids that provide addi-

tional benefits beyond the meters themselves. Maximizing the value of AMI investments

through multiple functions and nonmetering capabilities may be crucial to justifying the

costs. Smart meters can serve as a technology platform on which to expand grid mod-

ernization and can do so at a relatively small marginal cost, such as through upgrading

of communication networks for nonmetering purposes (Levy, Herter, and Wilson 2004;

NETL 2008; EEI 2011; MITEI 2011, 132–137).
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Table 2. Costs and Benefits of Smart Meters.

Private Costs More expensive than other meter types

Social Costs Privacy concerns from detailed data
Security concerns from networked systems
Health concerns from RF emissions

Private Benefits Utility operations capabilities

Social Benefits Economic efficiency through time-varying rates
Energy management capabilities
Integration of distributed generation and storage resources
Reductions in environmental emissions

Table 2 summarizes the costs and benefits of smart meters. The costs and ben-

efits are classified by private and social categories though some elements of the social

costs and benefits may also apply to the private costs and benefits of utilities. For util-

ities, relative to society as a whole, the net benefits of smart meters may not be great

enough to warrant their adoption or an adequate pace of adoption. Moreover, these

costs and benefits vary across utilities. This creates a potential role for public policy in

supporting the diffusion of smart meters, like that embodied in the Recovery Act smart

grid programs. Although the financial expense of smart meters is an important determi-

nant in the diffusion of smart meters, there are many other relevant factors illuminated

by theoretical models of technology diffusion.
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CHAPTER III

SOCIAL RESEARCH ON SMART METERS

The extant research on smart meters in the social sciences is broad. The majority

of this social research, however, is related to the behavioral aspects of the consumption

feedback that smart meters provide, often in combination with incentives given by time-

varying rates. The realized benefits of smart meters from changes in consumption, as

studied in the behavioral research, impact the diffusion of the technology through cost-

benefit evaluations. Less research exists on the technological innovation aspects of smart

meters, such as the determinants of their diffusion. Table 3 surveys and provides a clas-

sification of recent research related to smart meters. Though not exhaustive, this survey

is representative of the distribution of research with respect to general research topics.

Table 3. Research on Smart Meters in the Social Sciences.

Author(s) (Year) Research Topic Results

Behavior

Allcott (2011) Smart meters and dynamic
pricing

Hourly real-time pricing in-
creases consumer surplus by
$10 per household per year.

Buchanan, Russo,
and Anderson
(2014)

Smart meters and consumption
feedback

Energy monitors facilitate
learning about consumption
behavior.

Buchanan, Russo,
and Anderson
(2015)

Smart meters and consumption
feedback

The success of in-home dis-
plays on reducing overall
consumption depends on user
engagement.

Carroll, Lyons, and
Denny (2014)

Smart meters and TOU pricing TOU rates lead to significant
reductions in both overall and
peak demand.

continued...
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...continued

Author(s) (Year) Research Topic Results

Corbett (2013) Smart meters and consumption
feedback

Smart meters improve utilities’
demand-side management
efforts but also require organi-
zational changes.

Darby (2006) Literature review Real-time direct feedback in
combination with indirect
feedback through accurate
billing can lead to sustained
reductions over time in overall
demand.

Darby (2010a) Literature review Improved consumption feed-
back is necessary but not
sufficient for reducing overall
and peak demand.

Darby (2010b) Smart meters and customer
engagement

Significant reductions in overall
demand require careful design
of customer engagement.

Darby (2012) Smart meters and energy
poverty

Smart meters can help the
energy poor by helping them
manage their consumption.

Davis et al. (2013) Smart meters and pilot studies Significant bias exists in the
experimental design of many
studies regarding smart meters
and their impact on consump-
tion feedback.

Cosmo, Lyons, and
Nolan (2014)

Smart meters and TOU pricing Consumers significantly re-
duce peak demand after the
introduction of TOU prices and
information feedback.

Faruqui and Sergici
(2010)

Literature review Households respond to dy-
namic pricing by reducing peak
demand but the magnitude
of price response depends on
multiple factors.

continued...
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...continued

Author(s) (Year) Research Topic Results

Faruqui, Sergici,
and Akaba (2013)

Smart meters and dynamic
pricing

Residential customers respond
to dynamic pricing. Response
to critical peak pricing is simi-
lar to response to critical peak
rebates.

Faruqui, Sergici,
and Akaba (2014)

Smart meters and dynamic
pricing

Demand response to critical
peak pricing is greater than re-
sponse to critical peak rebates.

Gans, Alberini, and
Longo (2013)

Smart meters and consumption
feedback

Feedback reduces overall de-
mand by 11-17% on average.

Gilbert and Zivin
(2014)

Smart meters and consumption
feedback

More frequent billing and
reminders reduce overall house-
hold energy consumption by
0.6–1%, but there is significant
heterogeneity in responses.

Guerreiro et al.
(2015)

Sociopsychological factors
influencing the use of smart
meters

Subjective norms, perceived
utility and risk, procedural
justice, and time of use are
important factors influencing
the use of smart meters.

Hargreaves, Nye,
and Burgess (2013)

Smart meters and consumption
feedback

Over the longer term, en-
ergy monitors fall into the
background and have limited
potential for reducing overall
consumption.

Hartway, Price, and
Woo (1999)

Smart meters and TOU pricing TOU pricing can be profitable
to utilities.

Herter (2007) Smart meters and critical peak
pricing

High-use customers reduce
peak demand more than low-
use customers but low-use
customers save more on elec-
tricity bills annually.

continued...
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...continued

Author(s) (Year) Research Topic Results

Herter and Wayland
(2010)

Smart meters and critical peak
pricing

Larger users reduce peak de-
mand the most. There is no
significant difference in peak
demand reductions with a
higher critical peak price com-
pared to a baseline critical peak
price.

Herter, McAuliffe,
and Rosenfeld
(2007)

Smart meters and critical peak
pricing

Customers with automated
load control technologies re-
duce peak demand more than
those without such technolo-
gies.

Herter, Wood, and
Blozis (2013)

Smart meters and dynamic
pricing

Customers with dynamic pric-
ing reduce peak load more than
those in load control programs.

Ivanov et al. (2013) Smart meters and peak demand Households with in-home dis-
plays and smart thermostats
reduce peak demand by 15%
compared to those without
such technologies.

Jessoe and Rapson
(2014)

Smart meters and consumption
feedback

Consumption feedback fa-
cilitates learning, leading to
reductions in overall and peak
demand.

Kendel and Lazaric
(2015)

Smart meters and consumption
feedback

Smart meters should be com-
bined with other measures like
smart rates in order to have
greater impacts on reducing
overall and peak demand.

Léautier (2014) Smart meters and dynamic
pricing

Savings from real time pricing
is negligible for most residen-
tial consumers, casting doubt
on the value of deploying
smart meters to this class of
customers.

continued...
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Author(s) (Year) Research Topic Results

Matsukawa (2016) Smart meters and dynamic
pricing

Critical peak pricing combined
with in-home displays lead
to greater reductions in peak
demand.

McKerracher and
Torriti (2013)

Smart meters and consumption
feedback

Overall energy savings from
real-time feedback with in-
home displays are less than
previously found with larger
and more representative sam-
ples.

Olmos et al. (2011) Smart meters and dynamic
pricing

Indirect feedback, critical peak
pricing, and simple TOU pric-
ing together lead to the greatest
reductions in overall and peak
demand.

Simshauser and
Downer (2012)

Smart meters and dynamic
pricing

Dynamic pricing improves load
factors by 9 percentage points.

Torriti (2012) Smart meters and TOU pricing TOU pricing leads to higher
average overall consumption
as well as load shifting in
mornings but not in evenings.

Torriti (2014) Smart meters and consumption
feedback

Smart meters reduce over-
all demand by 29.8% and by
5.2% more compared to load
controllers.

Torriti (2016) Literature review Energy savings from smart me-
ters with consumption feedback
has declined in studies over
time, owing to larger and more
representative sample sizes.

Tsuda et al. (2017) Literature review The effectiveness of demand
response instruments depends
on the characteristics of con-
sumers, location, and climate.

continued...
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Author(s) (Year) Research Topic Results

Wolak (2011) Smart meters and dynamic
pricing

The transaction costs of re-
sponding to real-time pricing
are negligible for residential
consumers.

Zhang, Siebers, and
Aickelin (2016)

User learning As consumers become more
experienced with smart meters
they save more energy, but
consumer interest must be
maintained over time.

Technology

Erlinghagen, Licht-
ensteiger, and
Markard (2015)

Smart meter communication
standards

Many standards exist but are
not necessarily interoperable,
posing difficulties.

Gerpott and Pauk-
ert (2013)

Consumer valuation of smart
meters

Consumer trust in data pri-
vacy and intention to change
behavior are strongly related to
willingness to pay.

Katz (2014) Smart meters and demand
response

Smart meters provide necessary
information but other policies
are needed to ensure demand
response.

Kaufmann, Künzel,
and Loock (2013)

Consumer valuation of smart
meters

Most consumers perceive a pos-
itive value from smart meters
and are willing to pay for them.

Kavousian, Ra-
jagopal, and Fischer
(2013)

Smart meter data Weather, location, and floor
area are the most important fac-
tors in residential consumption
of electricity.

Krishnamurti et al.
(2012)

Consumer valuation of smart
meters

Consumers confuse smart me-
ters with in-home displays and
other related technologies and
expect savings to be immediate.

continued...
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Author(s) (Year) Research Topic Results

Kurth (2013) Smart meters and market
design

Smart meters act as the inter-
face between the grid and the
market. Technological stan-
dards are crucial to achieving
the most effective deployment
by avoiding obsolescence and
enabling interoperability.

Leiva, Palacios, and
Aguado (2016)

Smart meters and energy policy Smart meter standards are
needed to facilitate energy
management applications and
electric vehicle charging.

Marvin, Chappells,
and Guy (1999)

Environmental innovation Different smart meter technical
development pathways can be
identified and inserting envi-
ronmental concerns into any
one is only partially a technical
problem.

McKenna, Richard-
son, and Thomson
(2012)

Smart meter data Privacy issues can delay the
deployment of smart meters if
not adequately addressed.

McHenry (2013) Smart meters and governance Maximizing smart meter ben-
efits requires collaboration
and planning across multiple
stakeholders.

Pepermans (2014) Consumer valuation of smart
meters

Consumer preferences are het-
erogeneous with respect to cost
savings and privacy. Dynamic
pricing receives low value.

Urban (2016) Smart meter data privacy Privacy and security threats
from smart meter data can
impose significant social
costs if not addressed before
widespread smart meter use.

continued...
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Author(s) (Year) Research Topic Results

Diffusion

Chou and Yutami
(2014)

Consumer adoption of smart
meters

Perceived usefulness, ease of
use, and low risk are associated
with an increased propensity to
adopt smart meters.

Dedrick et al. (2015) Adoption of smart grid tech-
nologies

Adoption of smart grid tech-
nologies, like smart meters,
requires organizational and
regulatory changes.

Inderberg (2015) Smart meter diffusion policy Smart meter diffusion in Nor-
way was led by national reg-
ulators. Consumer interest
groups had little influence in
the process.

Jennings (2013) Smart meter diffusion policy Effective deployment strategies
target the correct group of cus-
tomers based on the purposes
for smart meter use.

Schiavo et al. (2013) Smart grid policy and regula-
tion

Regulation must change to fos-
ter innovation in electric power
systems and related experience
is key.

Pupillo and Serre
(2013)

Smart meter diffusion policy Government must play an
active role to guarantee the
diffusion of smart meters.

Rixen and Weigand
(2013)

Smart meter diffusion simula-
tion

The rate of diffusion is affected
by learning and the level of
diffusion is affected by cost-
benefit thresholds.

Rixen and Weigand
(2014)

Smart meter diffusion simula-
tion

The best policy instrument for
encouraging adoption of smart
meters depends on specific
objectives.

continued...
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...continued

Author(s) (Year) Research Topic Results

Spodniak (2011) Smart meter diffusion Central East European coun-
tries lag the rest of Europe in
smart meter adoption. The
lack of standards has slowed
adoption.

Spodniak, Jantunen,
and Viljainen (2014)

Smart meter diffusion The role of the state in smart
meter diffusion decreases after
the market has developed.

Wunderlich (2013) Consumer adoption of smart
meters

Consumer attitudes and per-
ceived locus of causality and
control are important variables
influencing adoption.

Zhang (2010) Smart meter diffusion policy Government initiatives and
regulatory policies have played
a major role in the diffusion of
smart meters around the world.

Zhang and Nuttall
(2011)

Smart meter diffusion simula-
tion

Agent-based models of smart
meter diffusion can inform
policy options.

Zhou and Matisoff
(2016)

Smart meter diffusion policy Public policies supporting
smart meters are more impor-
tant for their diffusion than
social interest groups or selec-
tion regimes.

Evaluation

Faruqui, Harris,
and Hledik (2010)

Cost-benefit analysis of smart
meters

The additional benefits of smart
meters from dynamic pricing,
beyond their operational ben-
efits, are necessary to achieve
positive net benefits from adop-
tion.

Cook et al. (2012) Cost-benefit analysis of smart
meters

Smart meters have substantial
positive net benefits.
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As the table shows, the majority of research can be classified as behavioral re-

search related to consumption feedback and time-varying electricity prices, primarily for

consumers in the residential customer class. These studies typically analyze smart me-

ters combined with in-home displays that provide direct consumption feedback in real

time. The literature reviews for studies of smart meters and their impact on consump-

tion are especially useful for assessing the general findings of the behavioral research.

In particular, Torriti (2016, 61–82) performs a systematic review of behavioral studies

and finds that the estimated reductions in overall and peak demand from using smart

meters with consumption feedback has declined in studies over time. The author argues

that this finding primarily derives from improved sample design in more recent studies

resulting in larger and more representative sample sizes. Earlier studies often faced a

self-selection bias where motivated and energy-conscious consumers were more likely

to participate in behavioral studies. The finding of a smaller demand reduction effect

is important because these energy savings influence cost-benefit evaluations of smart

meter adoption.

Behavioral studies have also been conducted by the industry itself as well as gov-

ernment agencies. Research on the impact of time-varying rates on consumer behavior

stretches back to the 1970s and 1980s, such as the Electric Utility Rate Design Study car-

ried out by the Electric Power Research Institute. EPRI (2009) summarizes the literature

on residential consumption feedback and proposes a theoretical economic framework

and research collaboration strategy to address further research questions. Ehrhardt-

Martinez, Donnelly, and Laitner (2010) perform a systematic review of residential con-

sumption feedback programs and find that some types of feedback are more effective

than others. The authors also note that studies are needed with larger sample sizes ex-

tended over longer time periods to assess the persistence of energy savings. Foster and

Mazur-Stommen (2012) review results from recent industry studies of real-time con-

sumption feedback and find significant heterogeneity among consumers with respect to
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demand reductions. Additionally, Darby et al. (2015) summarize the UK experience with

smart meter deployments and identify best practices for consumer engagement. The

Recovery Act SGIG program also funded behavioral studies for some subsidized smart

meter deployments in order to produce more rigorous experimental designs testing the

impact of different time-varying rate designs on peak demand reduction. Descriptions

of these projects are summarized by Cappers, Todd, and Goldman (2013) and analysis of

results can be found in DOE (2016b).

Apart from consumer behavior, other research topics have concerned such issues

as smart meter data privacy and technology standards. Additionally, although there are

numerous cost-benefit studies by utilities as part of their smart meter business cases,

there are relatively few in academic outlets. The social research not explicitly concerned

with the technological innovation aspects of smart meters is indirectly related to studies

of smart meter diffusion through the expected impacts of the diffusion of this technol-

ogy. The most relevant prior research for analyzing the diffusion of smart meters is

relatively small, and I will discuss these studies in greater detail later when describing

my empirical analysis.
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CHAPTER IV

MODELS OF TECHNOLOGY DIFFUSION

Technology diffusion can be modelled theoretically and empirically as well as

with simulations. In this chapter I provide a brief overview of theoretical models of

technology diffusion and link them to empirical research. Surveys of diffusion models

and empirical findings in the economics literature, from which I draw, can be found

in Stoneman (1983, 1987b, 2002), Thirtle and Ruttan (1987), Metcalfe (1988), Grübler

(1990, 11–69), Dosi (1991), Lissoni and Metcalfe (1994), Karshenas and Stoneman (1995),

Sarkar (1998), Baptista (1999), Geroski (2000), Hoppe (2002), Hall (2005), and Stoneman

and Battisti (2010). Studies of the diffusion of innovations span multiple disciplines,

and I focus here on models of diffusion found in the economics literature. The models

I describe focus specifically on the adoption of technologies by firms. I neglect models

analyzing consumer adoption of technology as well as models analyzing the impact

of technology diffusion on economic growth and development, though there is some

overlap.

4.1 Theoretical Models of Technology Diffusion

Theoretical models of technology diffusion can be categorized into four types:

epidemic, probit, game theory, and evolutionary models. Each type of model attempts

to explain why the diffusion of technology does not occur instantaneously, as observed

widely in empirical data. These models primarily concern interfirm diffusion but they

can typically be extended to cover intrafirm diffusion as well. Each model contributes

unique insights on the diffusion process that may be suited to particular settings. Nel-

son, Peterhansl, and Sampat (2004), for example, argue that diffusion is a complex and
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varied process such that a plurality of theoretical perspectives is beneficial. The major

differences among the theories lie in whether the diffusion process is conceptualized

as a disequilibrium or an equilibrium process, whether it is driven by endogenous or

exogenous forces, and whether adoption decisions are modeled using bounded or un-

bounded rationality.

4.1.1 Epidemic Models

The first theoretical models of technology diffusion relied on an analogy with

medical epidemics, stemming from the characteristic S-curve observed in empirical

data. This type of model, later termed an epidemic model, revolves around informa-

tion, expectations, risk and uncertainty, and learning. In essence, the model is based on

imperfect information about a technology on the part of potential users.

A simple epidemic model presupposes a homogeneous population of potential

users that does not change over time. Interaction among innovators and the rest of the

population spreads (or infects) others with information about the technology, leading

others to adopt. As more potential users adopt, the probability of adopting for nonusers

increases, reaching a maximum rate and then decreasing because of an unchanging

population size. Information regarding the technology grows over time with associated

reductions in uncertainty surrounding the technology. When combined with compet-

itive pressures this information encourages more and more potential users to adopt.

Such a process can be represented mathematically by a logistic equation that traces an

S-curve over time, although other sigmoid or ogive functions can also be used. Such S-

curves can be symmetric, as in a logistic or normal specification, but are often observed

empirically to be asymmetric, as in a Gompertz specification. The mathematical formu-

lations of epidemic models are especially useful for forecasting and simulation purposes,

although such uses do not necessarily have an explicit theoretical underpinning related

to a learning process. They are also useful for describing and comparing diffusion phe-

54



nomena at a macro level without resorting to any theoretical framework at the micro

level.

Epidemic models represent diffusion as an endogenous, disequilibrium process

involving the transition from one long-run equilibrium of technology use to another.

Griliches (1957) and Mansfield (1961, 1968) are early, pioneering studies of diffusion

based on epidemic models. Epidemic models can also be applied to intrafirm diffusion

where the emphasis is placed on intrafirm learning (Mansfield 1963a, 1968).

One point of concern is the different types of information that can be transmit-

ted. Awareness of a technology, one type of information, does not automatically lead to

adoption. An evaluation process must take place first. Firms decide to adopt technolo-

gies based on their expected benefits, which are often uncertain. In this sense learning is

integrally tied to reducing uncertainty about the benefits of a technology and also high-

lights the potential difference between information and knowledge. Information about

a technology can concern its hardware or software aspects and their related codified or

tacit knowledge dimensions. Awareness often highlights information about the hard-

ware aspects in addition to codified knowledge, but persuasion typically requires tacit

knowledge of the software aspects. The benefits of a technology may only be revealed

through learning by using or through knowledge spillovers from existing users.

Information, furthermore, can be received from both external and internal influ-

ences (Lekvall and Wahlbin 1973). External sources include media and advertising from

suppliers. Internal sources include peers. The interactive element in peer-to-peer learn-

ing reveals the potential importance of social and economic networks in the diffusion

of new technologies. Learning is also costly, which can have significant impacts on the

diffusion process. The complexity of a technology, in part, determines its own diffusion.

Epidemic models predict a faster rate of diffusion for simpler technologies with clearly

defined and perceived benefits.
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Epidemic models have been critiqued on a number of grounds. Some critiques

include the static, homogeneous population of potential users, unchanging technol-

ogy, passive information processing on the part of potential users, and general lack of

standard economic content concerning decision making. The exact nature of the inter-

personal exchange of information in the model and the potential for other sources of

information such as knowledge spillovers from rival firms is also a point of issue.

A fundamental critique of epidemic models is the lack of heterogeneity among

potential adopters, although early users of the model were certainly aware of the im-

portance of firm heterogeneity in their empirical applications. The degree of homophily

in the population, for example, can impact the effectiveness of communication and per-

suasion among potential users. The ability of users to learn is another important factor

affecting adoption decisions, as well as their degree of risk aversion. Despite these cri-

tiques, more sophisticated epidemic models can and have been developed to address

these issues (Geroski 2000). Antonelli (1989) provides a neo-epidemic perspective on

diffusion—similar to evolutionary approaches discussed later—by integrating bounded

rationality assumptions into a micro-level framework that gives rise to a collective learn-

ing process. Many of the extensions of epidemic models can be found in the marketing

literature, influenced by the seminal Bass model (Bass 1969). These are surveyed in Ma-

hajan and Peterson (1985), Mahajan, Muller, and Bass (1990), and Meade and Islam

(2006).

4.1.2 Probit Models

The desire for choice-based or decision-theoretic models and an emphasis on

the heterogeneity of firm characteristics led to the development of technology adop-

tion models based on conventional microeconomic reasoning. These models were later

termed probit models from their empirical applications. They assume a heterogeneous

population of unboundedly rational, profit-maximizing firms where the costs and ben-

56



efits from adoption may differ across firms as a result of differences in firm characteris-

tics such as size, previous investments, or organizational factors. Firms compare benefits

to costs and adopt if a threshold where benefits exceed costs is met. Simple models as-

sume perfect information while extensions incorporate imperfect information. David

(1969) and Davies (1979) are early examples of probit models.

A characteristic S-shaped diffusion path can be obtained in probit models from

the changing costs and benefits over time specific to each firm, resulting in a distribu-

tion of adoption times. An increase in the number of adopters of a technology can occur

either from a decrease in the costs or an increase in the benefits of adopting. Subse-

quently, the rate of diffusion is determined by the rate of change in costs and benefits.

The costs and benefits themselves change exogenously either from changes in the adop-

tion environment or changes in firm characteristics, and these changes can occur simul-

taneously affecting diffusion through multiple processes (Cabe 1991).

Probit models represent diffusion as an exogenous, equilibrium process. The

equilibrium level of adopters reached in each time period is determined by costs and

benefits in such a way that the diffusion process is represented by a sequence of chang-

ing equilibrium states over time. In contrast to epidemic models, probit models do not

necessarily result in a saturation point where all potential users of a technology ulti-

mately adopt. Some firms may find it unprofitable to adopt at any time or the costs

and benefits of adopting change such that further diffusion ceases after a certain time

period. In addition, probit models have been extended to the intrafirm dimension by

Battisti (2000) and Battisti and Stoneman (2005), where the intensity of use of a technol-

ogy within a firm is also determined within a profit-maximizing framework.

Critiques of probit models have been made in a few areas. The basic assump-

tions of this type of model do not include the possibility of interaction or strategic be-

havior among firms. Probit models also do not account for potential endogenous rela-

tionships in the diffusion process. Moreover, the models rely on strong assumptions
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about firm behavior, including rationality and perfect foresight. Some models, though,

assume myopic expectations within a profit-maximizing framework. Probit models in-

corporating learning and the formation of expectations by firms have been developed as

well.

4.1.3 Game Theory Models

Sharing the assumptions of firm behavior found in probit models, game theory

models analyze the impact of strategic interaction on technology adoption decisions.

Reinganum (1981b) and Reinganum (1981a) develop the first game theory models ap-

plied to technology diffusion, from which other work is derived. In these models a styl-

ized S-curve can be generated from strategic behavior related to the timing of adoption.

First-mover advantages play a role here. The stock of adopters in any given time period

may also impact the benefits of adopting for nonadopters. Further work in game theory

models has involved issues of pre-emption and rent equalization in adoption timing

(Fudenberg and Tirole 1985) as well as intrafirm diffusion (Stoneman 2013).

Game theory models show that even if homogeneous firms and perfect infor-

mation are assumed diffusion occurs over time as a result of the interdependence of

adoption decisions. In contrast, a probit model with the same assumptions but with

a lack of interaction results in instantaneous diffusion. Additionally, the endogenous

evolution of market structure stemming from the diffusion of a new technology is a

possibility in these models. Critiques of game theory models are similar to critiques of

probit models with respect to the strong assumptions about firm behavior.

4.1.4 Evolutionary Models

Critiques of the neoclassical unbounded rationality assumption led to the de-

velopment of evolutionary models of technology diffusion. These models are distinct

from the previously described models, but they share certain characteristics from each

58



of them. They are based on an evolutionary outlook on economics that is different from

neoclassical conceptions. At the core of the evolutionary perspective are boundedly

rational firms operating in irreducibly uncertain environments.

Evolutionary models view diffusion as a multistage process through which tech-

nology, firms, and the adoption environment change and co-evolve over time endoge-

nously, such that the process is cumulative and adaptive and integrates variation, selec-

tion, and innovation (Grübler 1991, 1996; Silverberg 1991; Metcalfe 1988, 2005a). This

view is consistent with nonlinear models of innovation in which invention, innovation,

and diffusion can operate in parallel and with feedback. Changing environmental condi-

tions can lead to different selection pressures over time amidst a variety of technological

options. Competitive pressures may cause unfit firms to lose market share or exit an in-

dustry from not adopting profitable technologies. Time is viewed in historical terms as

irreversible, and path dependence in technology adoption decisions is possible such that

firm-specific capabilities and strategies built over time or decisions in the early stages

of the diffusion process can significantly influence the path of diffusion. The presence

of dynamic increasing returns to adoption is also important. These cumulative effects

determine the path of diffusion, hence the evolutionary nature of the models. A charac-

teristic S-curve can be obtained from learning and related reductions in uncertainty as

well as imitation of successful adopting firms. Silverberg, Dosi, and Orsenigo (1988) is

an early example of an evolutionary model of innovation and diffusion.

Evolutionary models share with epidemic models the notion that diffusion can

be self-propagating but they incorporate active search and learning processes on the

part of firms instead of the passive acquisition of information. They share with probit

models an emphasis on the heterogeneity of firms and with game theory models the

possibility of strategic interaction and endogenous changes in firm size and market

structure, but they do so within a disequilibrium framework and with assumptions of

bounded rationality. A disequilibrium perspective is rooted in the idea of circular and

59



cumulative causation where economic phenomena are viewed as adaptive processes

not necessarily tied to an ultimate end of equilibrium. Bounded rationality is the no-

tion that cognition is a scarce resource and that the costs of making decisions lead to

nonoptimizing behaviors and strategies in uncertain environments (Conlisk 1996; Lee

2011; Mallard 2012; Todd and Gigerenzer 2012). Furthermore, bounded rationality can

be connected to a disequilibrium perspective by viewing nonoptimizing behavior as pro-

cedural rationality in which decisions are refined and adapted over time in a learning

process.

Much of evolutionary theorizing in the economics of innovation can be captured

by replicator equations, originally developed to explain the evolution of populations in

biology (Andersen 2004). The evolutionary approach models diffusion as the evolving

population of technologies and their relative importance as a result of variety genera-

tion and selection mechanisms (Metcalfe 2005a). In this way evolutionary models view

innovation and diffusion as interconnected processes. Other evolutionary models may

be based on Pólya urns or on evolutionary game theory (Dosi and Kaniovski 1994). A

general critique of evolutionary models is that they may overcomplicate representations

of the diffusion process, providing little marginal value over simpler neoclassical ap-

proaches. They also include elements that are not easily quantified and thus cannot be

formally modeled with mathematics (Grupp 1998, 75–76).

4.1.5 Comparing Theoretical Models

The differing theoretical models of diffusion are not necessarily mutually exclu-

sive, even among evolutionary and nonevolutionary models. Nonevolutionary models

can be interpreted as special cases of evolutionary models when firms possess perfect

information and history does not affect current outcomes. In this way evolutionary

models are robust to misspecification of assumptions concerning rationality and his-

tory. It is important to note that the different models simply emphasize one aspect of
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the diffusion process, usually at the expense of the other potential determinants. Even

these formal models do not necessarily capture all the potential determinants affecting

the diffusion of a technology. The development of technology standards, for example,

may play a key role in diffusion, and institutional factors like regulation are also impor-

tant. Such factors may be integrated into some models of diffusion indirectly through

changes in the adoption environment, but they may be endogenous and are typically

difficult to quantify (Grupp 1998, 51–52; Sarkar 1998).

The variety and complexity of diffusion processes precludes the construction of

a general model of diffusion (Gold, Peirce, and Rosegger 1970; Nelson, Peterhansl, and

Sampat 2004). This complexity, however, does not preclude a general list of potential

determinants that may impact a diffusion process, from which relevant factors may in-

form the use of appropriate models. Nelson, Peterhansl, and Sampat (2004) provide a

typology of diffusion processes that is useful in this regard, based on the presence or ab-

sence of dynamic increasing returns and sharp, persuasive feedback. Probit models are

arguably more appropriate when the benefits of a technology are clear or when increas-

ing returns are absent. Evolutionary models are arguably more appropriate when there

is substantial uncertainty regarding the benefits of a technology or when increasing re-

turns are present, as in path-dependent processes. Table 4 summarizes and compares

the theoretical models described above. The major differences exist between equilibrium

and disequilibrium frameworks.
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Table 4. Comparison of Technology Diffusion Theories.

Model Framework Characteristics

Epidemic Disequilibrium Endogenous reductions in uncertainty from
learning through the spread of information

Probit Equilibrium Heterogeneous, profit-maximizing firms re-
sponding to exogenous changes in technology
and adoption environment

Game Theory Equilibrium Strategic behavior in the timing of adoption

Evolutionary Disequilibrium Heterogeneous, satisficing firms adapting
to endogenous changes in technology and
adoption environment

Other models of technology diffusion not covered above or constrained to one

theoretical perspective focus on specific applied issues. Diffusion occurs over both time

and space so that geography may be a causal factor in the diffusion of new technologies

(Hägerstrand (1953) 1967; Brown 1981). Substitution models depict the diffusion process

as the displacement of an older technology for a newer technology, which is not always

explicitly considered in diffusion models (Fisher and Pry 1971; Sharif and Kabir 1976).

Other areas of research include the impact of regulation on adoption decisions (Capron

1971; Sweeney 1981), the adoption of complementary innovations (Antonelli 1993; Stone-

man and Kwon 1994; Colombo and Mosconi 1995; Stoneman and Toivanen 1997; Battisti,

Colombo, and Rabbiosi 2015), and network externalities and path dependence (David

1985; Farrell and Saloner 1985, 1986; Katz and Shapiro 1985, 1986; Arthur 1989). Further-

more, some research has modeled interaction between supply and demand in shaping

technology choices (Metcalfe 1981; Stoneman and Ireland 1983; Stoneman 1987b, 80–97;

Antonelli 1989). There may also be interaction between interfirm and intrafirm diffusion

processes that has not been sufficiently covered in theoretical models. Suggestions and

pathways for future research in the economics of technological diffusion can be found in

Stoneman (2002, 303–306) and Stoneman and Battisti (2010).
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4.2 Empirical Models of Technology Diffusion

Different theoretical perspectives on the determinants of the diffusion of tech-

nology inform the choice of empirical methods for analyzing real-world diffusion phe-

nomena. Empirical work in the study of diffusion has involved case study, historical,

and econometric methods. All of these methods can be complementary to one another

and if used together can provide a fuller understanding of the diffusion process than

any one method alone. Case study methods refer to in-depth analysis of the adoption

decisions of a firm or small set of firms. Historical methods refer to the analysis of pri-

mary sources and other historical evidence to reconstruct diffusion processes and their

determinants. Econometric methods refer to the use of regression analysis to assess the

determinants of diffusion processes. Econometric analysis can be distinguished by the

use of aggregate or disaggregate models (Karshenas and Stoneman 1995). Aggregate

models assess the overall diffusion path by focusing on the number of adopters of a

technology or proportion of output produced by a technology. They are typically used

to compare diffusion patterns across technologies, industries, or countries. Disaggre-

gate models focus on the decision-making processes of firms and typically concern the

timing of adoption decisions.

Numerous approaches to disaggregate econometric analysis of diffusion phe-

nomena have been used, but duration models are generally regarded as the best ap-

proach because of their explicit modeling of the timing of adoption. Regression models

applied to technology adoption include binary and multinomial choice models, count

data models, panel data models, duration models, or combinations of these. The avail-

ability of data has been a major limitation in empirical studies. This is especially the

case for the intrafirm dimension. In particular, lack of data on the timing of adoption

decisions leads to the use of econometric models other than duration models. Panel

data covering a sufficient amount of time is ideal, tracking adoption and intensity of use
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within firms along with relevant covariates. Such data are rare (Karshenas and Stone-

man 1995; Stoneman 2002, 95–105).

In the existing empirical literature Griliches (1957) and Mansfield (1961, 1963a,

1968) are early examples that transformed the logistic equation from epidemic models

into econometric models of interfirm and intrafirm diffusion. Many studies have uti-

lized similar methods. Nabseth and Ray (1974) is another early example employing case

study methods with some econometric analysis (where the data allowed) inspired by

the preceding works. The relevance of duration models for diffusion were later recog-

nized. Karshenas and Stoneman (1993) developed a flexible duration model that can

incorporate a variety of potential determinants of a diffusion process arising from mul-

tiple theoretical perspectives. The authors categorize the potential determinants as epi-

demic effects (from epidemic models), rank effects (from probit models), and order and

stock effects (from game theory models). They do not, however, explicitly address evo-

lutionary perspectives. Their general framework has been used frequently in empirical

research, primarily for studies of interfirm diffusion. The analysis of intrafirm diffu-

sion may also be accommodated by duration models by specifying an extensive level of

adoption and analyzing the time from a basic level of adoption until an extensive level

of adoption. Foster and Wild (1999) and Foster (2004) examine econometric analysis

from an evolutionary perspective with discussions of application to innovation diffusion

based on an augmented logistic diffusion model.

The joint analysis of interfirm and intrafirm diffusion is another issue in the lit-

erature. Multistate duration models have been proposed by Karshenas and Stoneman

(1995) as a way to model interfirm and intrafirm diffusion jointly, but they require sub-

stantial amounts of data. Multistate models have yet to be implemented in the literature,

however, most likely owing to a lack of data. Sequence analysis is an extension of multi-

state models also appropriate for the study of diffusion. Multinomial choice models or
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bivariate probit models can also be used by differentiating between basic adopters and

extensive adopters.

The selection of an appropriate empirical model is determined by a number of

factors. Data availability is a fundamental determinant. Research questions are another,

such as a focus on the level versus the rate of diffusion. Theory must also play a guiding

role in model selection. A thorough understanding of the technology under study and

its historical, social, and economic contexts is imperative. In general, duration models

are best equipped to explain the dynamics of technology diffusion because of their abil-

ity to use panel data and their explicit focus on the timing of adoption decisions. They

model diffusion as a dynamic process and can be used with any theoretical perspective.

Evolutionary perspectives, however, may require alternative approaches, though there

is little empirical literature taking an explicitly evolutionary view that uses econometric

methods. The relative complexity of evolutionary theories of diffusion highlights the

potential limitations of econometric analysis when nonlinear, endogenous, and path

dependent relationships are important characteristics of the diffusion phenomena un-

der study. Qualitative variables such as institutions, social norms, and historical events

are not always easily measured or amenable to econometric analysis. Evolutionary ap-

proaches more often use detailed historical and case study methods as alternatives or

complements to econometric methods. In this way, evolutionary perspectives align with

general critiques of econometrics that this research method cannot answer all questions

and often neglects other sources of data and vernacular economic knowledge. Instead,

this approach promotes pluralistic applied research methods with differential strengths

and weaknesses that collectively advance knowledge of a subject through triangulation

(Sarkar 1998; Swann 2006; Starr 2014).
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4.3 Simulation Models of Technology Diffusion

Computer simulations offer a third mode of investigating diffusion phenomena.

This is important given the general paucity of adequate data on diffusion processes.

Simulation models are computer programs informed by theory and calibrated with ref-

erence to empirical data. Simulations can take the form of system dynamics models or

agent-based models. System dynamics models are based on difference or differential

equations, as found in epidemic models, whereas agent-based models are based on al-

gorithms representing agent behavior, conducive to decision-theoretic models. These

techniques originated from the study of complex systems, which are characterized by

pervasive heterogeneity among agents, uncertainty and bounded rationality, interdepen-

dence and feedback, nonlinearity, emergence, and adaptation. Agent-based models are

particularly useful for evolutionary perspectives in economics, where the economy is

viewed as a complex adaptive system (Lane 1993a, 1993b; Watts and Gilbert 2014).

In agent-based models heterogeneous agents are embedded in social and eco-

nomic networks and interact with one another over time. These models are typically

calibrated to accord with specific economic and historical contexts surrounding the dif-

fusion of a technology. In this regard, agent-based models can overcome some of the

limitations of both mathematical and econometric models. They can more easily explore

interactive behavior and nonlinear and endogenous processes. One important advan-

tage of these models is overcoming the limitations of theoretical representative agent

models that assume homogeneous agents in order to be analytically tractable. Nelson

and Winter (1982) is an early example in the economics literature using computer sim-

ulations informed by evolutionary theory and concerning the search processes of firms

with respect to technology generation and adoption. Silverberg, Dosi, and Orsenigo

(1988) develop an evolutionary model of technology diffusion and use computer sim-

ulations to investigate their theory. More recently, Watts and Gilbert (2014) provide a
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broad overview of agent-based models applied to innovation phenomena, with a focus

on diffusion.

67



CHAPTER V

DETERMINANTS OF EARLY SMART METER DIFFUSION

IN THE UNITED STATES

Theoretical models of technology diffusion elucidate the potential determinants

of the early diffusion of smart meters in the United States. These relevant determinants

can then be considered in empirical analysis. In this chapter I describe the relevant de-

terminants and classify them into supply-side, demand-side, and environmental cate-

gories. I also provide expected effects of the determinants on smart meter diffusion.

5.1 Determinants of Technology Diffusion

The determinants of the diffusion of new technologies among firms can be

grouped into three general categories: supply, demand, and environment (DePietro,

Wiarda, and Fleischer 1990; Wejnert 2002). The significance and impact of any given

determinant may differ across the interfirm and intrafirm dimensions. Supply-side fac-

tors include the nature of the technology, improvements in performance, technology

standards, related infrastructure, entrepreneurship and marketing, production capacity,

market structure, and cost structure (Rosenberg 1972; Brown 1981; Gold 1981; Stoneman

and Ireland 1983; Miller and Garnsey 2000; Stoneman 2002, 78–92). Demand-side factors

include user learning, both across and within firms, and heterogeneous firm characteris-

tics, such as size, financial resources, absorptive capacity, and managerial strategy (Gold

1981; Stoneman 2002, 29–54). Environmental factors concern the adoption environment

and include public policies, regulation, geography, or other dimensions (Gold 1981; Dosi

1991; Lissoni and Metcalfe 1994). There may also be interaction among all three general

types of determinants.
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Uncertainty, a fundamental aspect of economic activity, cuts across and influ-

ences all three categories. On the supply side, technology standards are one means to

reduce uncertainty with respect to product quality, upgradability, and interoperabil-

ity. On the demand side, potential adopters of a technology may be uncertain as to the

actual capabilities or benefits of a technology and there may be heterogeneous expecta-

tions, hence the potential importance of learning in the diffusion process. Additionally,

they may be uncertain about the potential technical improvements or changes in price

of the technology over time, impacting their profitability considerations and timing of

adoption. Environmental factors like public policy may also create or reduce uncertainty

by shaping the adoption environment (Rosenberg 1972, 1976; Ireland and Stoneman

1986; Stoneman 2002, 55–66).

The majority of diffusion research, both theoretical and empirical, has focused

on demand-side factors related to firm characteristics to the neglect of supply-side and

environmental factors. Furthermore, the interfirm and intrafirm diffusion processes may

have distinct determinants or they may be interdependent. Most research has exam-

ined these two processes separately, but recent empirical research has analyzed the two

components jointly (Battisti and Stoneman 2003; Åstebro 2004; Hollenstein 2004; Battisti

and Stoneman 2005; Battisti et al. 2007; Hollenstein and Woerter 2008; Battisti, Canepa,

and Stoneman 2009; Arvanitis and Ley 2013). The selection environment within which

adoption occurs as well as the relative importance of determinants may also change over

time, which has not been studied extensively. Collectively, these issues can complicate

empirical analysis considerably by requiring a greater theoretical sophistication and

substantial amounts of data.

The relevant determinants in the early diffusion of smart meters include all three

of the supply-side, demand-side, and environmental factors. Following Karshenas and

Stoneman (1993), these determinants are motivated from the major currents in diffusion

theory, including learning effects emphasized in epidemic and evolutionary models,
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firm-specific effects emphasized in probit and evolutionary models, and environmental

effects emphasized in evolutionary models and to a lesser extent in probit models.

5.2 Supply-Side Factors

Although the characteristics of adopters are the usual focus of diffusion research,

the supply side may play an equally important role. Relevant supply-side factors affect-

ing the diffusion of smart meters include price, competition among meter manufactur-

ers, changes in product quality over time, and technology standards.

The cost of AMI has an impact on the profitability calculations of utilities. Cost

reductions and improvements in technology performance over time can come about

through a cumulative process of learning by doing on the part of manufacturers (Ar-

row 1962b; Nakićenović 2002; Thompson 2010). The price of smart meters has declined

gradually over time since their introduction in the 1990s, likely the result of a general

decline in the costs of electronic products. The decline, however, has only been slight,

and the costs of communication systems and data management systems have remained

relatively stable. Product quality has increased gradually at the same time, including

an expanded capacity for upgradability. The cost of a smart meter may also depend

on the exact functions desired, such as import/export metering or remote connect and

disconnect. More functions generally incur a higher cost. The meters themselves repre-

sent roughly half the cost of an AMI system (FERC 2006; FERC 2010; EEI 2006a, 2006b;

Haney, Jamasb, and Pollitt 2009; EPRI 2011).

The supply side of the meter market has historically been competitive, and prod-

uct differentiation appears to be small. In the North American market, the major sup-

pliers of smart meters currently include Itron, GE, and Sensus and have included Lan-

dis+Gyr, Elster, and Aclara in the past. There are also many smaller entities with lesser

market shares. Globally there has been a trend toward consolidation among meter man-

ufacturers over the past two decades. During this time, electronic meters have overtaken
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the market share of electromechanical meters. The industry has largely come to view

AMI as the standard metering technology for the future, and manufacturing firms have

begun offering communication, data, analytics, and related services as a result. Manu-

facturing capacity on the part of these firms could potentially limit smart meter diffu-

sion depending on the number of large orders from utilities that occur at the same time

(ABS Energy Research 2005, 2006, 2007, 2009, 2010; Alejandro et al. 2014; Ulama 2015).

Technology standards can also play an important role in the diffusion of new

technology by organizing a common technical language that reduces transaction costs

and facilitates information diffusion (David 1987; Link and Tassey 1988; David and

Greenstein 1990; Link and Kapur 1994; Metcalfe and Miles 1994; Tassey 2000, 2015; Blind

2004). Though they are a supply-side phenomenon, their development typically de-

pends on user involvement. Standards can be categorized into two broad types, product

and nonproduct standards, both of which are relevant to the diffusion of smart meters.

Product standards refer to the functionality and design of the product, and nonproduct

standards refer to other technical aspects on which the product is not based. Utilities

may be reluctant to adopt smart meters, for example, if they are not certain that the

product they purchase takes accurate measurements, if they fear vendor lock-in because

of a lack of interoperability among smart grid technologies, or if they fear technologi-

cal obsolescence in an evolving technology space. Standards are especially important if

AMI is viewed as a technology platform and as foundational for the smart grid. Some

standards already exist and others are currently being developed. Various organizations

are involved with the standards setting process. Furthermore, there are standards for

both smart meters and the broader smart grid, related to communication networks and

the need for interoperability of devices connected to and interacting with the power

grid. The lack of standards, especially surrounding interoperability, has likely delayed

the diffusion of AMI (NETL 2008).
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The American National Standards Institute (ANSI), a private nonprofit organiza-

tion based in the United States, has coordinated the development of standards related

to smart meters in collaboration with the National Electrical Manufacturers Association

(NEMA). ANSI C12 is a set of standards related to electricity metering and are revised

and updated over time as metering technology evolves. These standards concern perfor-

mance criteria for electricity metering, including measurement accuracy, product design,

data tables, and interfaces for communication networks. They represent a combination

of product quality and interface standards. ANSI C12.1 and ANSI C12.20 cover mea-

surement accuracy and were revised in 2008 and 2009, respectively, to bolster product

quality. ANSI C12.19 defines how data collected by meters are structured and was last

revised in 2012 from its 2008 version. ANSI C12.22 covers the interoperability of meters

and their data with communication networks as well as the encryption of data. It was

last revised in 2012 from its 2008 version. Another standard, NEMA SG-AMI 1-2009,

was created in 2009 to enable firmware upgradability of smart meters, an important

issue related to technological obsolesence (NEMA 2017).

The National Institute of Standards and Technology, an organization sponsored

by the US federal government through the Department of Commerce, works with indus-

try to develop standards across a broad range of scientific and technological fields with

a focus on measurement. These standards are utilized by the previously described ANSI

standards. NIST was also tasked by the Energy Independence and Security Act of 2007

to coordinate the development of technology standards and cybersecurity guidelines

for the smart grid in the United States. It has engaged multiple stakeholders in the de-

velopment process, including utilities, generators, product providers, consumers, and

regulators (NIST 2014a, 2014b, 2017).

With respect to smart meters, NIST works on measurement accuracy, grid edge

sensors, cybersecurity and data privacy, and the interoperability of meters with commu-

nication networks and data systems, including utility networks and behind-the-meter
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home area networks associated with demand response activities. NIST played a leading

role in encouraging early implementation of NEMA SG-AMI 1-2009. In 2009 NIST estab-

lished the Smart Grid Interoperability Panel (SGIP) to aid the ongoing development of

smart grid standards, originally as a public-private partnership. The SGIP has desired

an accelerated timeline for the development of these standards and has utilized a prior-

ity action plan process to achieve this. The AMI-related standards compose one of nine

priority areas. The organization eventually transformed into an industry-led nonprofit

in 2013. NIST and SGIP have also been involved with developing technical standards

for the Green Button Initiative, a program designed to facilitate access to electricity con-

sumption data for consumers. NIST also works internationally with other organizations

to develop smart grid standards, such as the International Electrotechnical Commis-

sion (IEC) whose IEC 61850 international standard is the basis for interoperability work

(GSGF 2014; NIST 2014a, 2014b, 2017).

5.3 Demand-Side Factors

Relevant demand-side factors in the diffusion of smart meters include firm char-

acteristics and learning processes. There are a number of heterogeneous utility charac-

teristics influencing the decision to adopt smart meters. Expectations, relating to price,

performance, or competing technologies, play a role in the timing of adoption. The ex-

pected profitability of adoption is calculated from the expected costs and benefits that

may vary across utilities, region, and time. These costs and benefits are explicitly identi-

fied in utility business cases for deploying smart meters. The relative advantage of AMI

over AMR, involving the additional functions beyond automation of the meter reading

process, may be viewed differently across utilities. AMI is compatible with the previous

adoption of AMR, owing to its direct evolution from AMR. AMI, however, constitutes a

more complex investment than AMR because of its more sophisticated communication

and data systems and potentially broader integration with other smart grid technologies.
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As a result, it may be more difficult for utilities to trial the technology, though pilot pro-

grams and demonstration projects are not uncommon for larger utilities. The adoption

of smart meters may also require organizational changes by utilities in order to realize

the full benefits of their use.

Smart meters are a capital-embodied process innovation that require substantial

investment. The cost of deploying AMI includes hardware and software costs as well as

installation, project management, adjustment, integration, and maintenance costs. De-

ployment costs can also vary depending on the type of deployment pursued, including

full, partial, targeted, or replacement deployment strategies. The benefits of deploying

smart meters include automation of the meter reading and billing processes, improved

operational management of the distribution grid, and improved customer service and

engagement. Additional benefits may be discovered through learning by using. In mak-

ing the decision to adopt smart meters, utilities weigh the expected costs against the

expected benefits. Cost-benefit analyses likely differ across utilities, region, and time

(NETL 2008; Haney, Jamasb, and Pollitt 2009; IEE 2011; EEI 2011; EPRI 2011).

Firm size is a widely analyzed variable in studies of innovation, and size can

often represent more than one relevant factor (Cohen 2010). Diffusion research has

typically found a positive association between firm size and the initial adoption of a

technology and a negative association between firm size and intensity of use (Mansfield

1963a, 1963b, 1968; Rose and Joskow 1990; Fuentelsaz, Gomez, and Polo 2003; Arvanitis

and Ley 2013). The inverse relationship between firm size and time to initial adoption

may stem from the ability of larger firms to more easily handle the costs and risks as-

sociated with technology adoption. It may also be related to greater financial resources,

more frequent capital turnover, closer relationships with equipment manufacturers,

and greater R&D capacity (Mansfield 1963b, 1968; Canepa and Stoneman 2005). Larger

firms may also find it more profitable than smaller firms to adopt technologies that have

significant labor-saving benefits depending on factor market conditions, and this adop-
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tion may enable further growth through economies of scale (David 1966). The absolute

level of investment required and the speed of decision-making processes in larger firms

may also slow down their intrafirm diffusion (Mansfield 1963a; Romeo 1975). Although

larger firms may have more frequent capital turnover, their larger stock of capital can

take longer to turnover completely as a result of vintage effects, which is the case for

long-lasting electricity meters. Additionally, if larger firms tend to be earlier adopters,

then they also generate the initial learning related to the actual benefits of adopting a

technology that can spill over to other firms. Knowledge spillovers can also influence

later adopters to adopt more intensively at a quicker pace. Utility size should have a

positive effect on the rate of interfirm diffusion for smart meters and a negative effect on

the rate of intrafirm diffusion.

For utilities, firm size overlaps to some extent with firm ownership. Investor-

owned utilities (IOUs) are typically much larger relative to municipal utilities (munis)

and co-operative utilities (co-ops). Utility ownership may impact adoption decisions

differently than size through differing organizational influences and incentives as well

as through regulation (Rose and Joskow 1990; Dedrick et al. 2015). Historically, munis

and co-ops have arguably been more engaged with their customers and more open to

investing in energy efficiency given their ownership structures. Insofar as smart meters

further such goals, these ownership structures should exert a positive effect on their

adoption. The general lack of regulatory burden for these utilities can also quicken the

pace of adoption. Additionally, co-ops are primarily rural and cover large geographic

areas, so the adoption of AMI should significantly reduce the costs of meter reads and

service switching. At the same time, munis and co-ops may be more financially con-

strained relative to IOUs, posing a barrier to adoption. In addition, public electric util-

ities can also be integrated with public water and gas utilities that may share metering

infrastructure, and a shared AMI infrastructure could be used for all these metering

needs resulting in additional cost savings. Some IOUs, however, also own and operate
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gas utilities and the same principle applies there. Municipal and co-operative owner-

ship should also have a positive impact on intrafirm diffusion strictly because of their

typically small size compared to IOUs.

Vintage effects may also impact adoption decisions (Mansfield 1963a, 1968; An-

tonelli 1993; Mulder, Groot, and Hofkes 2003; Das, Falaris, and Mulligan 2009). Vintage

effects may exist for those utilities that have previously adopted AMR technology, such

that the prior diffusion of AMR may impact the diffusion of AMI. Electronic meters

typically have a useful life of 10–20 years, so the prior installation of an AMR system

can increase the cost of adopting AMI through premature discontinuance of AMR. The

operational efficiencies resulting from a deployment of AMR also exist for AMI and will

have already been obtained if AMR has previously been deployed. Vintage effects can

negatively impact both the rate of interfirm and intrafirm diffusion if older meters are

replaced by newer smart meters over time. Additionally, most of the costs of adopting

AMI are upfront while the benefits accrue over the product’s lifecycle. The long-lived

nature of AMI capital investments also likely leads to joint adoption and intensity de-

cisions, helping to avoid sunk costs and the difficulty and cost of switching to other

metering technologies after an AMI deployment. Smart meters can also become more

valuable as more of them are deployed because of their role in grid operations and de-

mand response programs.

The significance of a vintage effect, however, likely depends in part on the type

of communication system previously installed for an AMR system (NETL 2008; EEI

2011). If a fixed communication system was previously selected, then the cost of up-

grading to AMI should be less than if a mobile communication system was previously

selected. Investment in the communication system would only incur relatively small

incremental costs. Additionally, it may also be true that a utility that has previously

adopted AMR may be more likely to adopt AMI as a result of the learning process with

AMR technology. Such a utility may recognize the relative advantage of AMI over AMR
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or assimilate the new technology into the organization more readily. Prior experience

with demand-side management activities, like load response programs, may also pos-

itively impact smart meter adoption through a learning process. Technology adoption

decisions can be positively affected by cumulative learning (Colombo and Mosconi 1995;

Arvanitis and Hollenstein 2001). The net effect on AMI adoption of the prior adoption

of AMR is ambiguous and depends on the timing and intensity of this prior adoption.

The choice of AMR versus AMI can also reflect a utility’s overall strategy and vision for

grid modernization.

Adoption decisions are also affected by uncertainty. Because adoption decisions

are also investment decisions, adoption is at least partially irreversible, resulting in sunk

costs, and uncertainty can delay investment on the part of risk-averse firms (Pindyck

1991). One source of uncertainty is technological expectations (Rosenberg 1972, 1976;

Balcer and Lippman 1984; Ireland and Stoneman 1986; Antonelli 1989; Weiss 1994). This

uncertainty relates to issues of improving technology, technological obsolescence, and

interoperability, addressed to an extent by the development of technology standards.

These have all been concerns with smart meters (FERC 2008, 17–22). An additional

source of uncertainty for IOUs is the ability to recover the costs of deploying smart

meters under conventional regulation and the possibility of future deregulation.

Uncertainty is also tied to learning that occurs both within and across firms,

leading to adaptive expectations over time. Learning involves becoming aware of a tech-

nology, its potential benefits, and how to adapt it to local conditions. Learning by using

imparts knowledge to firms on the actual costs and benefits of adopting a technology

and thereby reduces uncertainty, and this learning can be a social, interactive, and cumu-

lative process that generates knowledge spillovers to nonusers and leads to incremental

innovations even as the technology diffuses (Rosenberg 1982; Williams, Stewart, and

Slack 2005). For utilities this also involves learning best practices in smart meter deploy-

ments to minimize costs and recognizing new benefits as they arise to maximize the
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value of smart meters (EEI 2006a; EPRI 2010). Learning may be an important determi-

nant in the diffusion of smart meters because some of their benefits, particularly those

associated with demand response and consumer behavior, are uncertain. Pilot programs

for smart meters, a form of trialing, likely play an important role in the learning process

in this respect, reducing uncertainty for both utilities and regulators before committing

to large-scale deployments.

Dynamic capabilities allow a firm to capitalize on learning to generate value in a

changing environment (Teece 2010). The social and economic context within and around

firms, including organizational structures and regulatory environments, also shapes

innovative performance including that associated with learning (Lazonick 2005). The

most salient capability influencing the adoption of technologies is absorptive capacity,

referring to the ability of a firm to create value from externally sourced knowledge. The

absorptive capacity of a firm impacts adoption decisions through a firm’s ability to learn

about technology and its potential benefits. The degree to which a firm can search for,

process, and utilize knowledge external to itself impacts if and when it adopts a particu-

lar technology. Absorptive capacity may also be correlated with internal R&D activities

(Cohen and Levinthal 1989; Cohen and Levinthal 1990; Rosenberg 1990). Research and

development activities in the electric power industry are low relative to other industries.

Most R&D is carried out by manufacturers and not utilities. Investor-owned utilities per-

form the most R&D, principally through the collaborative, industry-supported Electric

Power Research Institute. This organization was formed in 1972 to address criticisms

of the innovative capabilities of the industry (Hirsh 1989, 131–138, 159–171). Innova-

tiveness is important in that it showcases the differing strategies that utilities have with

respect to changing market conditions, regulation, and technology in the electric power

industry.

Management strategy with respect to business models and technology choices

is subjective but can also influence technology diffusion (Nabseth and Ray 1974; Met-

78



calfe and Boden 2003; Preece 1995; Tidd 2010b). Smart grid technology and the rise of

distributed energy resources, including generation and storage, may require new busi-

ness and regulatory models for utilities in order to maximize the full benefits of these

technologies (Fox-Penner 2010; IEI 2015a, 2015b, 2016b; MITEI 2016; Shomali and Pinkse

2016). Utilities that adopt smart meters may also be likely to adopt other smart grid

technologies. The adoption of information technologies may also require changes in the

organizational structure and processes within firms, leading to productivity increases

(Attewell 1992; Brynjolfsson and Hitt 2000). The adoption of AMI likely requires utili-

ties to undergo some organizational changes and also acquire new skills and personnel

related to information technology, data management, and analytics.

Distributed generation has diffused in large part because of net metering poli-

cies. State policies with respect to net metering vary in their design. The majority of

states have enacted specific policies on net metering in order to reduce transaction costs,

ensure reliability, and support other goals like reducing environmental emissions. By

integrating import/export measurement functions into one meter, smart meters may

reduce the costs of metering for these customers. Detailed data on the amount and tim-

ing of electricity generated through distributed generation can help utilities manage

the grid more effectively. In states with visions of more competitive electricity markets,

like California, Texas, and New York, distributed generation is expected and encour-

aged to grow. At the same time, smart meters also enable time-varying net metering

rates, which may make distributed generation less profitable for some customers. Fur-

thermore, distributed storage may follow a similar path to distributed generation if

battery technology improves and associated costs are reduced. Overall, smart meters

help enable both a more flexible supply side and a more flexible demand side. As a re-

sult, utilities with larger numbers of net metering customers should be more likely to

adopt smart meters (Solar ABCs 2010; Römer et al. 2012; Borenstein and Bushnell 2015;

Dedrick et al. 2015).
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5.4 Environmental Factors

In addition to supply-side and demand-side factors, environmental factors can

play a decisive role in the diffusion of new technologies. The institutional structure of

the electric power industry is complex and polycentric. The methods of regulation and

their interaction with technological change and market structure influence how firms

pursue and adopt innovations (Hughes 1971; Sweeney 1981; Blind 2010). Public policy,

including state and federal policies and regulations, prominently shapes the adoption

environment of utilities with respect to smart meters (EIA 2011). Zhang and Nuttall

(2011) and Rixen and Weigand (2014) study the impact of policy on the diffusion of

smart meters via agent-based model simulations. They find that the impacts of different

policies depend on objectives. In particular, they find that monetary grants boost both

the speed and level of adoption, and they also find that liberalized markets are more

conducive to adoption.

Regulation has been found to influence diffusion processes in various industries

(Capron 1971; Oster and Quigley 1977; Hannan and McDowell 1984; Trajtenberg 1990;

Battisti and Stoneman 1998; Stoneman and Battisti 1998, 2000; Acemoglu and Finkelstein

2008; Gruber and Koutroumpis 2013). Government initiatives supporting smart grids are

major drivers in smart metering adoption around the world (Zhang 2010). In the United

States, relevant federal policies include subsidies for smart meters and pressure from

FERC to implement demand response programs, and relevant state policies include the

structure of electricity markets, regulatory strategies and incentives, and technology

mandates. This variation in state-level policy and regulation gives a spatial dimension

to smart meter diffusion in the United States. Such policies are important because vari-

ation in selection environments can lead to variation in technology choice (Glynn 2002;

Watson 2004). Additionally, the polycentric governance of electricity systems, divided

between different levels of government, adds a layer of complexity that can adversely
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impact technology diffusion if policies are not effectively coordinated (Goldthau 2014;

Zhou and Matisoff 2016).

Federal policy has supported the adoption of smart metering and time-varying

electricity rates despite the lack of legal jurisdiction, which rests with the authority of

states to regulate the distribution and retail sale of electricity. In order to better coordi-

nate policies at the federal and state levels, FERC and the National Association of Reg-

ulatory Utility Commissioners (NARUC) embarked on collaborative activities in 2006.

Federal policy has provided incentives for smart meters but not mandates. The impetus

for such support ultimately derives from energy efficiency and demand-side manage-

ment goals that can be traced back primarily to the 1970s oil crisis. More specifically,

the support for smart metering ultimately rests with the desire for demand response

through time-varying rates. Three federal policies stand out overall in targeting smart

meter adoption (Rose 2014).

One, the recognition of demand response as a viable and important resource in

electricity markets has been a persistent, overriding policy objective. FERC has acted

as a change agent in the diffusion of demand response, for which they have a keen in-

terest in promoting enabling technologies like smart meters. Although FERC does not

have jurisdiction over retail markets, retail markets can shape wholesale markets just as

wholesale markets can shape retail markets. In particular, fluctuating prices in whole-

sale markets are typically not reflected in retail rates (Rose 2014).

Two, the Emergency Economic Stabilization Act of 2008, passed in response to

the financial crisis of 2007–2008, included provisions that accelerated the tax depreci-

ation for smart meters from 20 years to 10 years. This was an incentive for utilities to

adopt smart meters as a means to further energy efficiency goals. These provisions also

applied to other smart grid technologies (Rose 2014).

Three, the American Recovery and Reinvestment Act of 2009 modified and

funded initiatives first approved in the Energy Independence and Security Act of 2007.
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The DOE received and managed $4.5 billion over five years for smart grid initiatives.

The two main programs funded were known as the Smart Grid Investment Grant pro-

gram ($3.4 billion) and the Smart Grid Demonstration Program ($600 million). Other

funded programs, for example, included workforce training and development ($100

million) and activities related to technology standards, interoperability, and cybersecu-

rity ($12 million). The SGIG focused on deploying smart grid technologies. It provided

matching grants to utilities who invested in AMI, subsidizing the costs of deployment

by up to 50%. In total, the SGIG disbursed nearly $1 billion to 81 utilities leading to the

installation of more than 16 million smart meters across the country (Rose 2014; DOE

2016a, 2016c, 2017b).

While policies at the federal level designed to enhance the diffusion of smart

meters have primarily involved monetary incentives, policies at the state level have

primarily involved regulatory mechanisms. Some aspects of state regulation may also

indirectly influence the diffusion of smart meters. It is typically the case that only IOUs

are subject to state regulation and not munis or co-ops. Although viewed as natural

monopolies and regulated as such in one form or another, distribution utilities may face

different incentives or pressures from the regulatory environment that influence their

adoption decisions. These influences may come from regulatory action or state policies

related to demand response and energy efficiency as well as the absence or presence of

formal wholesale markets and customer choice for electricity supply. There is significant

variation across the states with respect to these policies (EIA 2011; NGA 2016).

Common to all utilities in a given geographic region is the market structure. The

metering stock is owned and operated by distribution utilities, which are regulated in

some form regardless of a state’s restructuring status. Initially, the process of restruc-

turing electricty markets in the late 1990s created a disincentive to invest in advanced

metering because of concerns over stranded assets. Some states even implemented com-

petitive metering with the thought that this would facilitate the diffusion of advanced
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meters. The initial experiences, however, resulted in the opposite effect. These states

found that a competitive metering market was costly compared to a coordinated mass

deployment of advanced meters, and competitive metering policies were thereafter aban-

doned. The very early diffusion of smart meters was primarily influenced by the high

costs of adoption as well as the fear of stranded costs and uncertainty surrounding the

ability to recover the costs of investment stemming from deregulation or the potential

for future deregulation (EEI 2006a; NETL 2008).

The relationship between market structure and innovation has been studied

extensively in the innovation literature, with the primary findings being that a moder-

ate level of competition produces optimal innovation in most industries (Cohen 2010).

In the electric power industry, research has found that the liberalization of electricity

markets can promote innovation activity in energy-related products depending on insti-

tutional context and policy uncertainty (Markard and Truffer 2006; Sanyal and Cohen

2009; Jamasb and Pollitt 2008, 2011, 2015; Sterlacchini 2012; Sanyal and Ghosh 2013;

Cambini, Caviggioli, and Scellato 2016).

In those areas where wholesale markets have existed, wholesale prices of elec-

tricity fluctuate over the course of a day reflecting the time-varying costs of generating

electricity. Insofar as distribution utilities or retail suppliers must purchase electricity

in these markets, they may wish to reflect these costs in time-varying retail prices. The

desire for more efficient electricity markets was a primary driver behind restructuring

policies. Smart meters are an enabling technology for time-varying pricing, so utili-

ties in competitive areas may be more likely to adopt smart meters than those that are

not. Of course, vertically integrated utilities in conventionally regulated states also face

time-varying costs but their cost recovery mechanisms likely lead to less pressure to im-

plement time-varying pricing. The nature of rate-of-return regulation may also influence

technology adoption decisions through a capital-biased incentive.
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State regulation is another major determinant of utilities’ technology choices.

Regulatory interest in advanced metering was boosted by the Energy Policy Act of 2005,

which required all state regulatory commissions to consider advanced metering and

time-varying rates. NARUC passed a resolution in February 2007 recommending that

regulatory barriers be addressed with respect to the adoption of AMI. Recommenda-

tions included the development of AMI business cases, complementary policies and

ratemaking strategies to support demand response, timely cost recovery of investments,

and appropriate depreciation lives. In certain states AMI deployments have been de-

layed because of regulatory concerns over cost and consumer pushback related to pri-

vacy, safety, and health issues. Privacy and security concerns about smart meter data

have also led to laws or regulatory rulings aimed at protecting consumer data, which

could reduce uncertainty about data privacy and encourage smart meter adoption (EIA

2011; McKenna, Richardson, and Thomson 2012; Gerpott and Paukert 2013; Urban

2016).

There are multiple, and potentially complementary, dimensions of state regu-

lation that may influence the adoption of smart meters by utilities. These dimensions

include direct and indirect policies with regard to smart meter adoption. A number of

states, either through legislation or regulatory rulings, have supported or mandated the

deployment of AMI by IOUs (EIA 2011). The desire to expand demand response pro-

grams as well as pressure for improving billing practices can lead to policies supporting

the adoption of smart meters (Praetorius et al. 2009, 115–150; Foster and Alschuler 2011).

These mandates, however, have not necessarily emphasized the complementary adop-

tion of time-varying rates, and some states even limit time-varying rates for residential

customers (Lazar and Gonzalez 2015). Additionally, the nature of rate-of-return regu-

lation may also incentivize capital-biased technology adoption decisions (Averch and

Johnson 1962).
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Another relevant regulatory variable is lost margin recovery, which removes

disincentives for investments in energy efficiency. The two main types of lost margin re-

covery include lost revenue adjustments and decoupling. These mechanisms ensure that

utilities do not lose profits from energy efficiency investments. Lost margin recovery it-

self, though, does not necessarily encourage such investments (Brennan 2010; RAP 2011;

Sullivan, Wang, and Bennett 2011; Morgan 2013). Energy efficiency resource standards

(EERS) incentivize such activity by establishing long-term, legally binding efficiency

goals for utilities (or in some cases third-party efficiency program administrators). EERS

currently exist in twenty-five states and mostly apply to IOUs though in some states

other types of utilities are also subject to the standards. Of those states with EERS, most

account for potential lost revenues by offering cost recovery through performance-based

bonuses. Alternatively, third-party administrators or governmental agencies may be

tasked with the efficiency goals, who do not possess an inherent disincentive to invest

in energy efficiency. The combined presence of both lost margin recovery and EERS,

occuring in over half of the states with EERS, should exhibit a stronger effect on energy

efficiency incentives compared to the effect of either policy alone. The strength of such

an effect, though, likely depends on the specific design of EERS, for which there is sub-

stantial variation across states (Brennan and Palmer 2013; Palmer et al. 2013; Steinberg

and Zinaman 2014; ACEEE 2017a). These two policies may encourage the adoption

of smart meters by utilities insofar as smart meters can lead to reductions in overall

electricity demand through consumption feedback. Smart meters, however, are not nec-

essary to identify areas for efficiency improvements and other investments may prove

more profitable.
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CHAPTER VI

EMPIRICAL ANALYSIS OF EARLY SMART METER DIFFUSION

IN THE UNITED STATES

Smart meters currently compose about half of the electricity meter stock in use

in the United States and they continue to diffuse. In this chapter I present an empirical

analysis of the early diffusion of smart meters in the US electric power industry, consid-

ering jointly the determinants of both interfirm and intrafirm smart meter diffusion. I

describe the patterns of diffusion and also use econometric models to assess the determi-

nants of the diffusion process. Although smart meters have not fully diffused across the

industry, the empirical analysis in this chapter remains informative and policy-relevant,

focusing on the initial stages of the diffusion process.

Most of the theoretical and empirical research on technological diffusion is con-

cerned with the interfirm dimension of diffusion, and when the intrafirm dimension

is studied at all both dimensions are often analyzed separately. The lack of research

on intrafirm diffusion is seemingly odd, given that the impact of process innovations

like smart meters is only felt through their widespread diffusion across both the inter-

firm and intrafirm dimensions. This situation, however, likely results from a lack of

data. Econometric analyses of technology diffusion have typically used cross-sectional

data, which is not ideal because diffusion is an inherently dynamic process. My analysis

will differ in this regard by using a panel dataset that tracks smart meter use by electric

power utilities in the United States across both the interfirm and intrafirm dimensions

over a period of eight years.
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6.1 Data Sources

I use three datasets for the empirical analysis in this chapter. The principal

dataset that I use comes from survey data collected by the US Energy Information

Administration (EIA). The EIA began collecting data on the number of smart meters

installed and operational by distribution utilities at the operating level in 2007 for its

Annual Electric Power Industry Report, Form EIA-861. Participation in this survey is

required of all entities that generate, distribute, or sell electricity in the United States.

Within the dataset is information related to sales, revenue, generation, and energy effi-

ciency among other topics. It effectively covers the population of utilities in the United

States (EIA 2017a).1

Beginning in 2007, the survey requested from distribution utilities counts of

AMR and AMI meters installed and operational by customer classes (residential, com-

mercial, industrial, and transportation).2 The survey also provides explicit definitions

of the different types of meters when requesting counts of meter types in order to avoid

confusion and differences in interpretation of advanced metering on the part of utili-

ties. The survey defines standard meters as either electromechanical or electronic meters

that measure aggregate kWh and where meters are read manually over monthly billing

cycles for billing purposes only. It defines AMR meters as meters that collect data for

billing purposes only and transmit these data one-way from the customer to the util-

ity. It defines AMI as meters that measure and record data in intervals, at a maximum

hourly, and subsequently provide this data to both the customer and the utility at least

once daily. The survey also states that this data can be used for billing and other pur-

poses and notes that these meters can range from hourly interval meters to real-time

meters with two-way communication capabilities that can measure, record, and transmit

1. I only include data for utilities from the fifty states and the District of Columbia. I exclude the five
utilities in US territories because of their unique policy and regulatory status.

2. Form EIA-826 also collects data on counts of AMR and AMI meters installed and operational on a
monthly basis, providing a dataset with finer granularity, but this data first started being collected in 2011.
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data in real time. Additionally, the survey instructs respondents to record AMI meters

as AMR meters if they are only being used as AMR meters, although this note was re-

moved from the survey form for 2013 and 2014 (EIA 2017a).

The survey, however, did not request counts of standard meters and counts of

total meters installed and operational until 2013. The data concerning counts of total

meters per utility are necessary for calculating proportions of meter types, which are

necessary for tracking adoption levels within utilities. Data exist, however, on the total

number of customers per utility, which I use to generate estimates of total meters for use

in calculating proportions. In 2007 there were 639 observations recorded for counts of

advanced meters while in 2014 there were 1,925 observations. This discrepancy exists,

presumably, because of legitimate nonresponse, because those utilities who had no ad-

vanced meters simply skipped the associated questions for those survey years. I impute

these missing responses as zeros (EIA 2017a).

Data concerning utility activities indicates there were 2,803 unique distribution

utilities in the United States from 2007 to 2014 while only 1,991 utilities responded to

the questions concerning counts of meters. These numbers, however, are not precise.

The data tracking utility activities does not count IOUs that operate in more than one

state as separate utilities. In contrast, the number of utilities responding to the meter

questions is somewhat inflated because utilities that operate in more than one state re-

port for each state. I leave IOU data at the operating level because of the importance of

state regulation but add together state responses for munis and co-ops. Upon inspec-

tion it appears that those utilities who did not respond to the meter questions are small

munis and co-ops. It is possible they simply did not respond to the meter questions be-

cause they had neither AMR nor AMI meters during the time period under study, but I

exclude these utilities from the analysis (EIA 2017a).

The final analysis dataset that I use is primarily composed of data from the EIA

survey. It allows me to both describe and analyze the temporal and spatial patterns of
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smart meter diffusion in the United States by using utility-level data tracked over time.

Additionally, the Recovery Act SGIG program provides data on the timing and count of

smart meters installed as a result of this funding for the 81 utilities that were awarded

grants for such purposes (DOE 2015). I also use various other sources to generate vari-

ables related to regulatory environments (EIA 2011; IEI 2014; FERC 2015b; EMRF 2016;

ACCES 2017; ACEEE 2017a, 2017b). After a data cleaning process I arrived at a final

analysis sample composed of 1,805 distribution utilities followed over eight years from

2007 to 2014.

6.2 Patterns of Diffusion

6.2.1 Aggregate Patterns

Figure 7 depicts the aggregate temporal pattern of smart meter diffusion in the

United States with raw counts of smart meters. This pattern is also compared to the raw

counts of AMR meters in order to assess how the meter population is changing over

time. As shown, the smart meter diffusion path appears to correspond to the first half

of an S-curve. Furthermore, the patterns shows that a possible substitution process from

AMR to AMI is underway across the electric power industry.
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Figure 7. Temporal Pattern of Smart Meter/Advanced Metering Infrastructure (AMI) Diffu-
sion Compared to Temporal Pattern of Automatic Meter Reading (AMR) Diffusion in the
United States, 2007–2014. Data from EIA (2017a).

The SGIG subsidies, beginning in 2010, appear to have had a modest impact

overall on the level of AMI deployments, though they certainly boosted the number

of smart meters installed. In 2009 AMI totaled more than 9.5 million meters while in

2014 AMI totaled more than 58.5 million meters. The SGIG funded more than 16 mil-

lion smart meters installed from 2010 to 2015, amounting to roughly one-third of the

increase. Strong growth in AMI deployment was coincident with SGIG funding, per-

haps signifying a crowding-in effect related to learning and knowledge spillovers as a

result of the subsidies or to advancement of the smart grid as a whole.

Additionally, Figure 8 depicts the state-level spatial patterns of smart meter diffu-

sion in the United States with choropleth maps based on the proportion of AMI meters

in use in each state. In contrast, Figure 9 depicts the state-level spatial patterns of AMR

meter diffusion in the United States with choropleth maps based on the proportion of
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AMR meters in use in each state. These spatial patterns are interesting insofar as they

reflect differences in selection environments, most notably electricity market structures

and regulation. There is no clear pattern, however, in this regard. Although California

and Texas, two restructured states, have high proportions of smart meters in 2014, other

states with conventional vertically integrated structures also have high proportions, in-

cluding Alabama, Georgia, and Florida. This may suggest that regulation related to

distribution utilities specifically, as opposed to market structure, is a more important

driver of smart meter diffusion, even if policy rationales and instruments supporting the

adoption smart meters vary across states. Additionally, the spatial patterns suggest that

some utilities are choosing to adopt AMR over AMI.

6.2.2 Interfirm and Intrafirm Patterns

Figure 10 depicts the smart meter diffusion path in the United States with the

cumulative proportion of basic and extensive adopters over time for the final analysis

sample. As discussed later, I prefer to define basic adoption as a utility having a smart

meter proportion greater than 5%, as a means to avoid capturing trialing and discontin-

uance, and extensive adoption as a utility having a smart meter proportion greater than

70%. This alternative measure of diffusion also shows the first half of an S-curve.
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Figure 8. Spatial Pattern of Smart Meter/Advanced Metering Infrastructure (AMI) Diffu-
sion in the United States by State, 2007–2014. Data from EIA (2017a).
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Figure 9. Spatial Pattern of Automatic Meter Reading (AMR) Diffusion in the United States
by State, 2007–2014. Data from EIA (2017a).
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Figure 10. Cumulative Proportion of Basic and Extensive Adopters of Smart Meters.

The relative influence of interfirm and intrafirm diffusion in the overall diffusion

of smart meters so far, in terms of the proportion of basic and extensive adopters, is

about equal. The proportion of extensive adopters lags slightly behind basic adopters.

In 2014, 35% of sample utilities have at least a basic level of adoption whereas 29% have

an extensive level of adoption. This pattern may be somewhat misleading, however,

given that IOUs have the largest metering stocks and by virtue of their size take longer

to become extensive adopters. It is arguably easier and takes less time for smaller munis

and co-ops to achieve an extensive level of adoption. As a result, the pattern does not

adequately represent the contributions of the interfirm and intrafirm dimensions to

the aggregate diffusion of smart meters in the industry in terms of raw counts of smart

meters. The intrafirm component of IOUs dominates the general interfirm component

simply because IOUs typically have much larger metering stocks than munis and co-ops,

even though there are far fewer IOUs in number.
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Figure 11 depicts the changing proportion of basic and extensive adopters over

time within ownership types. I leave out the relatively small number of public utility

districts and state and federal utilities for simplicity. By 2014, more than half of co-

ops have adopted smart meters at a basic level whereas nearly one-third of IOUs have

adopted at a basic level and nearly one-sixth of munis have adopted at a basic level.

Even here, the proportion of extensive adopters lags slightly behind basic adopters for

each ownership type. These patterns may suggest that the decisions to adopt and at

what level to adopt are jointly determined and influenced by the same factors.
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Figure 11. Cumulative Proportion of Basic and Extensive Adopters of Smart Meters by
Ownership Type.

6.3 Duration Analysis of Smart Meter Adoption

A number of econometric models have been used to empirically assess the de-

terminants of the diffusion of new technologies. Some models compete on theoretical
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grounds, but the particular model chosen may also depend on the nature of the tech-

nology, context, stage in the diffusion process, and data limitations. The econometric

models I use here, including duration and fractional response models, attempt to as-

sess the factors at play in the decisions to adopt smart meters in the US electric power

industry.

One econometric approach that explicitly models the timing of events—in this

case technology adoption—and can also use panel data is duration analysis. A duration

model that uses panel data is able to analyze the microdynamics of adoption decisions

through which the aggregate diffusion path emerges. For these reasons and also its

ability to handle censoring relatively easily, duration analysis has become popular in

diffusion research. Duration analysis applied to technology adoption, the time it takes a

firm to adopt a certain technology from when it is commercially available, was first used

by Hannan and McDowell (1984) and is considered the ideal modeling strategy for in-

terfirm diffusion and can also be used for intrafirm diffusion (Karshenas and Stoneman

1993, 1995; Baptista 1999; Fuentelsaz, Gomez, and Polo 2003). This particular method

of analysis is used across many fields under different names, including event history

analysis, survival analysis, and failure-time analysis. The basic ideas are common across

fields but the specific models and techniques used are modified to suit the particular

field in which they are applied (Heckman and Singer 1984b; Box-Steffensmeier and

Jones 2004). Duration analysis is also useful for causal analysis, as opposed to merely

correlational analysis, because it models the influence of past conditions on future out-

comes (Blossfeld and Rohwer 1997).

In previous research on the diffusion of smart meters only one econometric

model has been applied. Zhou and Matisoff (2016) use a linear panel analysis approach

to model smart meter diffusion across the fifty United States using states as observa-

tional units. The authors use the same EIA dataset that I use but differ from my analysis

by focusing exclusively on the impact of public policies across states and their interac-
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tion with federal policies. This study is not concerned with utility characteristics or the

timing of adoption but only with the level of diffusion. In addition, Dedrick et al. (2015)

examine issues surrounding the adoption of smart grid technologies, including smart

meters, but use qualitative interview data from only twelve utilities in the United States.

Spodniak (2011) and Spodniak, Jantunen, and Viljainen (2014) examine smart meter

diffusion in Central East Europe but use thematic and descriptive analysis. Zhang and

Nuttall (2011) and Rixen and Weigand (2013, 2014) also examine aspects of smart meter

diffusion but use agent-based model simulations instead of econometric analyses.

I use duration models to analyze the early diffusion of smart meters in the

United States from 2007 to 2014. I include covariates reflecting the effects of learning,

firm heterogeneity, and selection environments related to public policy and regulation

on the rate of diffusion. Duration models are flexible in that they can incorporate deter-

minants inspired by different theories of technology diffusion, including those focused

on learning, firm characteristics, and adoption environments (Karshenas and Stoneman

1993). As such, this analysis is exploratory in nature, attempting to assess the drivers of

smart meter diffusion in the United States. Duration models can also use either cross-

sectional or panel data in either continuous or discrete time, such that data limitations

play an important role in the specific duration model used.

6.3.1 Data Limitations and Modeling Considerations

Events typically take place in continuous time, although they can occur in dis-

crete time if, for example, decisions are made routinely at certain times in firms. For the

case of smart meters, the transition of a utility from a state of nonadoption to adoption

takes place in continuous, historical time, yet the measurements of adoption from the

EIA dataset are in discrete, yearly intervals. This kind of data is known as grouped du-

ration data, a type of interval-censored data. Heckman and Singer (1984b) and Lancaster

(1990) argue that duration analysis should use continuous-time methods for grouped
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data if the underlying process occurs in continuous time and if the data allows. While

this is certainly reasonable, data collection methods in the social sciences are often too

coarse. The use of continuous-time models applied to grouped data with many event

ties—simulatenous event occurrence—poses problems for estimation (Singer and Wil-

lett 2003; Allison 2014). It follows that the highly discrete nature of the EIA dataset

with respect to the timing of adoption prevents the use of continuous-time models.

Discrete-time duration models are preferable in these situations. Discrete-time mod-

els, though, have a few advantages; they can incorporate time-varying covariates more

easily, treat the effect of time more flexibly, and be estimated more easily (Allison 1982,

2014; Sueyoshi 1995; Jenkins 1995; Singer and Willett 2003).

In any duration model it is necessary to define time and duration. The diffu-

sion of technology concerns the time it takes for firms to adopt a technology (interfirm)

as well as the time it takes to diffuse to a certain level of use within firms (intrafirm).

Technically the process of diffusion begins at the moment of invention, but more prac-

tically it begins when the technology is first commercialized. Defining the time when

diffusion starts, and thus the onset of risk of adoption, is crucial for duration analysis of

technology adoption. For the case of smart meters, utilities technically became at risk of

adopting smart meters when they were first commercialized, and thus measurements of

the time it takes to adopt should start at this date. The first utility deployment of smart

meters, however, occurred in the 1990s (FERC 2006). Defining the beginning of diffusion

from this date would require substantially more data to model, but such data do not

exist.3

Measurements of the timing of events are often censored in duration analysis. In

the EIA dataset there are both left- and right-censored adoption times. Left-censoring

occurs where we observe in the first year of data, 2007, that some utilities have already

3. Some data exists from the first FERC Demand Response and Advanced Metering Report (FERC 2006)
but this survey uses a broader definition of advanced metering that may cover AMR meters. These data,
therefore, are not comparable to the EIA data and in fact do not match well with the EIA data from 2007.
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adopted smart meters but we do not necessarily know if this occurred in 2007 or in

prior years. In a few cases, however, it is clear that a basic level of adoption occurred be-

fore 2007, although it is difficult to verify prior adoption from other sources in order to

identify those observations that are in fact left-censored. Nonetheless, when comparing

the total metering stock to the proportion of smart meters in 2007 for these utilities, only

two utilities can be identified as certainly left-censored. The other utilities are small and

not unlikely to have adopted in 2007, even at an extensive level.

I assume these utilities adopted in the first year of data such that their dura-

tion times are one year, even if for some utilities this is not true. This assumption is a

practical measure in order to easily estimate the duration model. Listwise deletion of

left-censored observations, an alternative strategy, may bias the estimation because the

censoring is likely informative (missing not at random). Informative censoring means

censoring and duration times are not independent. This follows from a theoretical em-

phasis on firm heterogeneity in that earlier adopters may be distinct in their character-

istics (observed or unobserved) from later adopters. The disadvantage to making this

assumption is that the model I use will potentially underestimate the effect of time,

which is likely driven by cost considerations and uncertainty about the benefits of the

technology. There are relatively few utilities in this position and the approximate or-

dering of adoption is still preserved. Additionally, right-censoring, which is relatively

common compared to left-censoring, occurs in the last year of data, 2014, where we

observe that many utilities have not yet adopted smart meters. The amount of right-

censoring observed simply highlights that the diffusion process is ongoing. Accounting

for right-censored observations in duration analysis is relatively easy.

Other issues with the EIA dataset also exist. Data limitations led me to use a

sample of utilities less than the total in the dataset, based on the availability of relevant

data for covariates as well as quality issues. After cleaning the data, I obtain a sample of

1,805 utilities to analyze out of the 1,991 total available. The primary data quality issue
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relates to observing utilities with nonsensical switching from having all AMI meters to

all AMR meters or from all AMR meters to all AMI meters and back again over sequen-

tial years. In addition, with the exception of IOUs, I combined utilities with operations

in more than one state, with responses at the state-level, into a single set of observations

for the primary state. Eight mergers and acquisitions also occured among utilities over

this time period. I account for this by simply adding together the relevant survey re-

sponses as if they were one utility from the beginning (as is done in Fuentelsaz, Gomez,

and Polo 2003).

Another important issue is that I cannot calculate precise proportions of smart

meter use for utilities for most years of available data. In order to define adoption, the

natural diffusion metric I employ is the proportion of a utility’s metering stock that

consists of smart meters. Many diffusion studies have simply defined adoption as a

proportion greater than zero, but this can misleadingly pick up trialing of technology

that should not be considered adoption. This is especially the case if the technology

is discontinued after a trial period. Calculating proportions of smart meter use in this

case would not be necessary and adoption could be defined as a count of smart meters

greater than zero. Model results, however, may be sensitive to definitions of adoption.

The EIA dataset does not contain counts of the total number of meters for each utility

from 2007 to 2012 and the data for 2013 appears to be problematic, preventing me from

calculating precise proportions for these years. Instead, I use data on the total number

of customers to produce estimates for the total number of meters. Although the number

of meters can be greater than the number of customers because some customers have

more than one meter, using estimates of total meters based on counts of customers pro-

duces accurate if not precise estimates of proportions. I simply add a certain percentage

of customers to the total customer count as a means to proxy the count of total meters

for each utility. I use the 2014 data to compare total meters to total customers in order

to determine the percentage increase on a utility-by-utility basis. I ultimately categorize
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utilities as nonadopters and adopters based on a certain range of proportion of use, and

I also perform sensitivity analysis around this issue so that a precise measurement is not

vital to the duration analysis.

Another important modeling consideration is the joint analysis of interfirm and

intrafirm diffusion. The decision to adopt and when and the decision on how inten-

sively to adopt and when may not be independent. A few studies have modeled inter-

firm and intrafirm diffusion jointly using cross-sectional data (Battisti and Stoneman

2003; Åstebro 2004; Hollenstein 2004; Battisti and Stoneman 2005; Battisti et al. 2007;

Hollenstein and Woerter 2008; Battisti, Canepa, and Stoneman 2009; Arvanitis and Ley

2013), but so far none have used panel data. Most of these studies have found that adop-

tion and intensity decisions are independent and influenced by different factors and

thus can be modeled separately, but this is likely not the case for the adoption of smart

meters by utilities. Smart meter deployments are typically announced on a large scale,

implying that adoption and intensity decisions are considered jointly. Perusing utility

business cases for smart meters reveals that different scenarios are considered in cost-

benefit analyses, such as full deployment or partial deployment. A joint decision process

should not be surprising in this case given that smart meters are long-lived capital as-

sets and can also exhibit positive network externalities because as more are deployed

they become more valuable.

A multistate duration model integrates the analysis of these two dimensions into

one model, thereby accounting for the potential interdependency of the two adoption

decisions and their timing. Compared to a basic duration model, in a multistate model

diffusion is modeled as a progressive, sequential process, defining multiple states of

adoption based on certain ranges of proportions of use. Multistate models have been

suggested by Karshenas and Stoneman (1995) but have yet to be implemented in the

empirical literature on technology diffusion, primarily because they require substantial

amounts of panel data. Data limitations also prevent me from pursuing a multistate
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model. In the EIA dataset over half of the utilities who ultimately adopt are observed to

transition directly from a state of nonadoption in one year to a state of complete adop-

tion in the next. These utilities are overwhelmingly small munis and co-ops. A multi-

state model requires a smoother transition that the coarseness of the dataset does not

allow.

Because of these issues with the data, I cannot adequately assess the intrafirm

component of smart meter diffusion within a duration framework. Based on these de-

scriptions of adopters, however, and the fact that utilities typically announce a high

level of adoption when deciding to deploy smart meters, the rate of intrafirm diffusion

appears to be driven primarily by utility size. Vintage effects may also play a role here

as well. For the interfirm dimension I simply model the time until adoption at a basic

level using a discrete-time duration model, which for over half the utilities that adopt is

the same time it takes to reach an extensive level of use. For the intrafirm dimension I

model the level of adoption using a fractional response model.

6.3.2 Discrete-Time Duration Model

Duration analysis of technology adoption is a natural approach to analyzing in-

terfirm diffusion, which models the time (i.e., the duration) until initial adoption of a

technology (i.e., the event or transition). Previous diffusion research has used various

types of duration models that estimate the conditional probabilities of adopting a tech-

nology. A general continuous-time model was developed by Karshenas and Stoneman

(1993), based on the popular Cox proportional hazards model. This model suits empir-

ical analysis of technology diffusion because it can incorporate a variety of theoretical

perspectives, including learning and firm-specific effects. The general philosophy, how-

ever, that multiple theories can and should be tested in the same empirical model can be

extended to other duration models. I follow this approach within a discrete-time dura-

tion model for analyzing smart meter diffusion in the United States. General discussions
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of discrete-time methods in the context of duration modeling in social science research

can be found in Allison (1982, 2014), Yamaguchi (1991), Box-Steffensmeier and Jones

(2004), Singer and Willett (1993, 2003), and Tutz and Schmid (2016).

Let duration be denoted by the discrete random variable T such that T ≥ 0.

Then let t represent a discrete time period and a specific realization of T such that t =

1, 2, ..., q. A discrete-time approximation for an underlying continuous-time process

groups the occurrence of events in the intervals [0, 1) for t = 1, [1, 2) for t = 2 and so on

and where the origin of defined duration time, t = 0, precedes the first observed event

occurrence. Let the probability mass function of T be given by

f (t) = Pr(T = t)

where 0 ≤ f (t) ≤ 1 and ∑
q
t=1 f (t) = 1, representing the probability of adopting at time

t. The cumulative distribution function, then, is given by F(t) = Pr(T ≤ t) = ∑s≤t f (t)

where s denotes possible time periods. Let the survival function be given by

S(t) = Pr(T ≥ t) =
q

∑
s≥t

f (t) = 1−∑
s<t

f (t) = 1− F(t− 1)

representing the probability of not adopting until time t or after. Let the hazard function

be given by

h(t) =
f (t)
S(t)

=
f (t)

1− F(t− 1)

representing the ratio of the probability of adopting at time t to the probability of sur-

viving until time t or after. The hazard function can be re-expressed as a conditional

probability such that
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h(t) = Pr(T = t | T ≥ t)

where 0 ≤ h(t) ≤ 1, representing the probability of adopting at time t given that adop-

tion has not already occurred.

Let the hazard rate for utility i where i = 1, 2, ..., n at time t be given by

hit = Pr(T = ti | T ≥ t, xxxit)

where 0 ≤ hit ≤ 1 and xxxit denotes a vector of covariates. This equation represents the

discrete-time hazard function, the probability that a utility adopts at time t given that it

has not already adopted and given relevant covariates that may change over time.

Adoption can be defined in various ways, depending on the technology under

study and the specific diffusion metric used. Most diffusion studies define a basic level

of adoption simply as the proportion of the capital stock embodied in the new technol-

ogy or the output produced with the new technology being greater than zero. While

this may be reasonable in some cases, I prefer to define adoption more stringently as

a proportion of the metering capital stock greater than 5% in order to avoid capturing

potential trialing and discontinuance (such as through pilot programs). I also perform

sensitivity analyses by defining adoption alternatively as a proportion greater than zero

and as a proportion greater than 10%.

Let the timing of adoption be represented by a binary variable, ait, indicating

whether adoption has occurred in the time interval [t− 1, t) such that

ait =


1, if pit ≥ 0.05, ai,t−1 = 0

0, otherwise
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for t = 1, 2, ..., ti and where pit denotes the proportion of smart meters installed and op-

erational for utility i at time t. This implies that the number of observations that a utility

contributes to the analysis dataset includes the years of nonadoption up to and includ-

ing the first year of adoption, because no further information is needed once adoption

occurs. Furthermore, utilities with right-censored observations, in which ait = 0 for

all years, contribute the full information they provide despite never adopting. The orig-

inal panel dataset, then, shrinks to a utility-year dataset containing only the relevant

years of data on a utility-by-utility basis. This data structure also easily accounts for

time-varying covariates.

Subsequently, the hazard rate can be re-expressed as

hit = Pr(ait = 1 | ai,t−1 = 0, xxxit)

and defined as a function of covariates and time such that

hit = g−1(xxxit, t)

where g(·) is a link function that bounds the hazard rate between 0 and 1. The duration

model can then be interpreted within a binary response modeling framework and es-

timated using maximum likelihood methods with pooled data. Allison (1982) shows

that the multiple observations that a single observational unit contributes to the analysis

dataset can be treated as independently observed in a pooled model if events are non-

repeatable. This is an assumption, stemming from the conditional nature of the hazard

rate, that the repeat observations contributed by an observational unit are independent

conditional on having survived to each time period and conditional on the associated co-

variate values in each time period. I relax this assumption, however, by using clustered

standard errors to correct for any autocorrelation (Cameron and Miller 2015).
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The logistic function is a popular link function, owing to its relative ease of esti-

mation and interpretation. This leads to a pooled logit model estimated by maximum

likelihood methods. Duration dependence can be accounted for by simply including

a time variable, in the form of a linear trend, a polynomial of some degree, splines, or

more flexibly as a set of indicator variables. A discrete-time logistic duration model can

be specified as

hit =
exp(xxx′itβββ + ddd′tααα)

1 + exp(xxx′itβββ + ddd′tααα)

or more appropriately its inverse, g(hit), as

ln
(

hit

1− hit

)
= xxx′itβββ + ddd′tααα

where xxxit denotes a vector of covariates including a constant with a vector of coefficients

βββ and dddt denotes a vector of time variables with a vector of coefficients denoted by ααα

representing duration dependence. The exact specification of the time variables ulti-

mately depends on theoretical considerations. For smart meter adoption, I prefer the

most flexible form and use a set of indicator variables.

A logit model for discrete duration data was first proposed by Cox (1972). The

logit model, however, is not directly connected with the Cox proportional hazards

model but was intended as an approximation to the parameter estimates obtained in

a Cox model if the grouped intervals were sufficiently narrow. The logit model is also

not connected to any other continuous-time model. Subsequent work by Kalbfleisch and

Prentice (1973) and Prentice and Gloeckler (1978) found that the complementary log-log

link is the actual discrete-time analog of the Cox model and is also more appropriate

when grouped intervals are not narrow.

106



An important difference in the selected link function concerns implicit assump-

tions of proportionality. A logit model results in a proportional odds assumption whereas

a complementary log-log model results in a proportional hazards assumption. Propor-

tionality refers to a constant relative difference between two firms’ odds or hazard rates,

respectively, in a given time period. A model specification with interactions between

time and one or more covariates would constitute a nonproportional model. Such inter-

actions imply that the effects of a covariate are not constant over time. I test this assump-

tion of proportionality but find that it is inconsequential.

In the general context of binary response models, the complementary log-log

link is most appropriate for datasets with very few event occurrences. Logit and com-

plementary log-log specifications give very similar results when the probability of an

event is low. The differences in the estimates between the two specifications are often

negligible (Jenkins 1995; Singer and Willett 2003; Allison 2014). I perform sensitivity

analysis with respect to the link function and find that the results are robust across logit,

probit, and complementary log-log specifications. I focus on the logit model because of

its relative ease of estimation and interpretation.

6.4 Fractional Response Analysis of Smart Meter Adoption

To more adequately address the intrafirm component of smart meter diffusion, I

also use a fractional response model where a utility’s proportion of smart meter use is

modeled directly as the response variable. A fractional response model is preferable to a

linear model because it bounds the response between 0 and 1. Let pit, where 0 ≤ pit ≤ 1,

represent the proportion of smart meters installed and operational for utility i at time t.

Furthermore, let pit be defined as a function of covariates and time such that

pit = g−1(xxxit, t)
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where g(·) is a link function that bounds the response between 0 and 1. Similar to bi-

nary response models, a link function is necessary to bound the response between 0 and

1. I focus again on a logit model for simplicity. A fractional response logit model can be

specified as

pit =
exp(xxx′itβββ + ddd′tααα)

1 + exp(xxx′itβββ + ddd′tααα)

or more appropriately its inverse, g(pit), as

ln
(

pit

1− pit

)
= xxx′itβββ + ddd′tααα

where xxxit denotes a vector of covariates including a constant with a vector of coefficients

βββ and dddt denotes a vector of time variables with a vector of coefficients denoted by ααα.

Different estimation techniques have been proposed for fractional response models, such

as nonlinear least squares, but quasi-maximum likelihood methods have been shown to

perform the best in most situations (Papke and Wooldridge 1996; Ramalho, Ramalho,

and Murteira 2011).

In contrast to the duration model, in the fractional response model I use the

entire panel dataset. Fractional response models, however, are a relatively new econo-

metric method, and panel versions are still being developed. Additionally, different

estimation techniques are required for different distributions of the response variable,

which include both zeros and ones in my case (Ramalho, Ramalho, and Murteira 2011).

Therefore, I estimate simpler pooled versions of fractional response models and use clus-

tered standard errors by utility to correct for any autocorrelation (Cameron and Miller

2015). These estimates are still consistent, if not efficient. I also estimate both one-part

and two-part models. One-part models consist of a fractional response model on the full
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dataset regardless of the response values. Two-part models consist of a binary response

model in the first part, differentiating between responses with zeros and those with posi-

tive values, and a fractional response model in the second part that includes only those

observations with positive values. I also use a similar set of covariates to those in the

duration models and represent time as a set of indicator variables.

6.5 Model Variables and Summary Statistics

Descriptions of model variables and expected effects of covariates are presented

in Table 5, based on the hypothesized determinants discussed in the previous chapter.

Summary statistics for model variables for the pooled sample are presented in Table 6.

Sample characteristics by type of utility are presented in Table 7. Though IOUs repre-

sent a small proportion of utilities by number, they supply the majority of the American

population with electricity by customer base.
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Table 5. Descriptions of Model Variables.

Variable Description Expected
Effect

Response
AMI meter prop. (pit) estimated proportion of AMI meters
Adoption 1 (pit > 0) = 1 if estimated proportion of AMI meters > 0 ,

= 0 otherwise
Adoption 2 (pit ≥ 0.05) = 1 if estimated proportion of AMI meters ≥ 0.05

, = 0 otherwise
Adoption 3 (pit ≥ 0.10) = 1 if estimated proportion of AMI meters

≥ 0.10, = 0 otherwise
Covariates
Total customers (log) continuous, log of total customers +/-
Investor-owned utility binary, = 1 if investor-owned utility, = 0 other-

wise
+

Co-operative utility binary, = 1 if co-operative utility, = 0 otherwise +/-
AMR meter prop. continuous, estimated proportion of AMR meters +/-
Demand-side mgmt. binary, = 1 if engaged in demand-side manage-

ment activities (lagged one year), = 0 otherwise
+

Net metering binary, = 1 if net metering customers > 0, = 0
otherwise

+

State AMI support binary, = 1 if subject to state support for adop-
tion of AMI, = 0 otherwise

+

Wholesale comp. binary, = 1 if operating in formal wholesale
markets, = 0 otherwise

+

Customer choice binary, = 1 if operating in state with customer
choice, = 0 otherwise

+

Lost margin recovery binary, = 1 if subject to lost margin recovery, = 0
otherwise

+/-

Energy eff. stds. binary, = 1 if subject to energy efficiency resource
standards, = 0 otherwise

+/-

2008 binary, = 1 if year is 2008, = 0 otherwise +
2009 binary, = 1 if year is 2009, = 0 otherwise +
2010 binary, = 1 if year is 2010, = 0 otherwise +
2011 binary, = 1 if year is 2011, = 0 otherwise +
2012 binary, = 1 if year is 2012, = 0 otherwise +
2013 binary, = 1 if year is 2013, = 0 otherwise +
2014 binary, = 1 if year is 2014, = 0 otherwise +
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Table 6. Summary Statistics for Model Variables.

Variable Mean Std. Dev. Min. Max.

Response
AMI meter prop. (pit) 0.30 0.44 0 1
Adoption 1 (pit > 0) 0.41 0.49 0 1
Adoption 2 (pit ≥ 0.05) 0.35 0.48 0 1
Adoption 3 (pit ≥ 0.10) 0.34 0.47 0 1
Covariates
Total customers (log) 9.31 1.75 2.08 15.49
Investor-owned utility 0.10 0.30 0 1
Co-operative utility 0.39 0.49 0 1
AMR meter prop. 49.64 46.11 0 100
Demand-side mgmt. 0.19 0.39 0 1
Net metering 0.50 0.50 0 1
State AMI support 0.02 0.15 0 1
Wholesale comp. 0.40 0.49 0 1
Customer choice 0.31 0.46 0 1
Lost margin recovery 0.05 0.21 0 1
Energy eff. stds. 0.24 0.43 0 1
2008 0.13 0.33 0 1
2009 0.13 0.33 0 1
2010 0.13 0.33 0 1
2011 0.13 0.33 0 1
2012 0.13 0.33 0 1
2013 0.13 0.33 0 1
2014 0.13 0.33 0 1

Notes: Pooled sample 2007–2014. n = 14,440 utility-years.
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Table 7. Sample Characteristics by Type of Utility.

Utility Type Number Num. Prop. Total Customers Cust. Prop.

IOU 176 0.10 106,649,869 0.74
Co-op 708 0.39 17,790,309 0.12
Muni 847 0.47 13,685,438 0.10
PUD 64 0.04 3,736,686 0.03
State 7 0.00 1,336,782 0.01
Federal 3 0.00 39,731 0.00

Total 1,805 1.00 143,238,815 1.00

Notes: 2014 data. IOU = investor-owned utility. PUD = public utility district.

Utility size is proxied by the total number of customers. I log transform this vari-

able because of the vast size differences among utilities. Utility ownership is captured

by two indicator variables for IOUs and co-ops, with publicly owned utilities primarily

composed of munis left as the reference group. The adoption of AMR meters is mea-

sured by the estimated AMR proportion of a utility’s metering stock, expressed on a

0–100 scale. I estimate this proportion in the same way I estimate AMI proportions dis-

cussed previously. Demand-side management activities are captured by an indicator

variable if a utility reported having customers in incentive-based demand response pro-

grams, including direct load control, interruptible rates, demand bidding/buyback,

emergency demand response, capacity market programs, and ancillary service market

programs. I lag this variable to ensure that it does not reflect demand response pro-

grams implemented during or after smart meter adoption. The impact of distributed

generation resources through net metering programs is captured by an indicator vari-

able for having net metering customers or not. I use an indicator variable instead of a

continuous variable for total net metering customers in order to make interpretation eas-

ier. Alternative estimates suggest that the total number of customers is not as important

as having net metering customers.
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I also include a set of indicator variables reflecting different adoption environ-

ments. The impact of state support for smart meter adoption is captured by an indicator

variable for those states that have actively supported smart meter deployments, such

as through mandates or guaranteed recovery of investment costs.4 This variable ap-

plies only to IOUs and for the effective years. Electricity market structures are captured

by a set of indicator variables for utilities operating in the various formal wholesale

markets, with utilities operating in conventionally regulated markets as the reference

group.5 Alternative estimates suggest that including multiple indicator variables for

specific markets capturing any relevant differences in the markets are not important.

Additionally, I include an indicator variable for states that have implemented customer

choice for all customer classes.6 I include two more indicator variables related to en-

ergy efficiency. States with lost margin recovery mechanisms, including lost revenue

adjustments and decoupling, are captured by an indicator variable that applies to the

relevant IOUs for the effective years.7 Another indicator variable captures those states

with energy efficiency resource standards that applies to the relevant utilities for the

effective years.8 I also considered an interaction term between these two variables to

capture a possible synergistic effect resulting from removing disincentives to invest in

energy efficiency while also providing incentives to invest in energy efficiency. Alterna-

tive estimates showed that this interaction variable was not significant and likelihood

ratio tests concerning its inclusion were not rejected, so I exclude it for simplicity. Zhou

and Matisoff (2016) also assess other variables hypothesized to affect smart meter diffu-

4. States with active support for smart meter adoption during the period under study include AZ, CA,
CT, IL, ME, MA, PA, TX, and VT.

5. Formal wholesale markets include the CAISO, ERCOT, PJM, NYISO, SPP, MISO, and ISONE markets.
6. States with customer choice for all customer classes during the period under study include CT, DE, IL,

ME, MD, MA, MI, NH, NJ, NY, OH, PA, RI, and TX along with DC.
7. States with lost margin recovery mechanisms for IOUs during the period under study include AL, AZ,

AR, CA, CO, CT, HI, ID, IN, KS, KY, LA, ME, MD, MA, MI, MS, MO, MT, NV, NM, NY, NC, OH, OK, OR,
RI, SC, SD, VT, WA, and WY along with DC.

8. States with energy efficiency resource standards during the period under study include AZ, AR, CA,
CO, CT, HI, IL, IN, IA, ME, MD, MA, MI, MN, NV, NM, NY, NC, OH, OR, PA, RI, TX, VT, WA, and WI.

113



sion in the United States, like demographic characteristics and data privacy and security

policies, but they do not find any evidence of their importance. I exclude these variables

from my models for simplicity.

The remaining determinants are collectively captured by a set of indicator vari-

ables representing time with 2007 left as the reference year, including the impact of the

SGIG subsidies, effects of learning, reductions in cost and improvements in performance

of smart meters, and the development of technology standards. Subsequently, the time

variables reflect calendar time dependence, a trend of variables changing over time, and

not necessarily duration dependence (Colombo and Mosconi 1995), though the two are

equivalent in this case because no new distribution utilities were created during the pe-

riod under study if mergers are ignored. It is not ideal, of course, for the time variable

to capture all these effects because I cannot adequately assess the impact of each effect

separately, but multicollinearity issues prevent me from including additional variables.

Learning effects are typically captured with a time variable or some other estimate of

duration dependence (Karshenas and Stoneman 1993; Fuentelsaz, Gomez, and Polo

(2003); Battisti and Stoneman 2005). Alternatively, a variable representing the cumula-

tive stock of adopters can be used (Colombo and Mosconi 1995; Battisti, Canepa, and

Stoneman 2009), but in this case the variable is highly collinear with time. Any measure

of adoption costs, such as the average price of a smart meter, depicting the slight down-

ward trend that has occurred would also be highly collinear with time. Using a set of

indicator variables, however, allows some flexibility in teasing out some of these effects.

Similar multicollinearity issues have been common in previous empirical stud-

ies of diffusion. Fuentelsaz, Gomez, and Polo (2003) use time as a variable reflecting

learning effects but note that it could capture other influences that change over time like

changes in the technology or price. Colombo and Mosconi (1995) use time as a variable

reflecting price and performance trends as well as growth of exogenous information

about a technology. The difficulty of including system-level variables that vary over
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time but are fixed across observational units is one of the drawbacks of discrete-time

duration models.

These collinear variables, though, are interrelated theoretically, reflecting dif-

ferent sources of uncertainty that impact the expected profitability of adopting smart

meters. Learning reflects reductions in uncertainty over time about the actual costs and

benefits of adoption. Utilities may be uncertain about changes in the costs of adoption

over time, such as changes in the price of smart meters. Furthermore, utilities may be

uncertain about the performance, reliability, and interoperability of smart meters as well

as future improvements in the technology, which should be reduced over time through

the development of technology standards. These variable should exert a positive influ-

ence on adoption if these interrelated uncertainties are being reduced over time, such

that time should be positively correlated with adoption.

With respect to the SGIG subsidies, although it is possible to identify the grant

recipients, using an indicator variable for such purposes in the duration model is not

possible because it results in quasi-complete separation. All recipients of the subsidies

adopt smart meters but there are still utilities who did not receive the SGIG subsidies

that do adopt smart meters. This quasi-complete separation means maximum likelihood

estimates do not exist if such a variable is included in a binary response model (Albert

and Anderson 1984). By including a set of indicator variables for time, however, it is

possible to assess the effect of time before and after the SGIG subsidies became available.

This allows at least some means to assess the impact of the SGIG program.

Additionally, a potentially important variable related to learning that is not cap-

tured in the covariates because of lack of data is absorptive capacity. Some measure of

R&D activity, such as R&D expenditures or number of R&D employees, has typically

been used as a proxy in previous diffusion research (Karshenas and Stoneman 1993;

Colombo and Mosconi 1995; Battisti and Stoneman 2005) because absorptive capacity

is likely correlated with internal R&D activities (Cohen and Levinthal 1989; Cohen and
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Levinthal 1990; Rosenberg 1990). These data are not collected in the EIA dataset. The

ownership variables, to an extent, may capture the effect of absorptive capacity because

IOUs perform more R&D than other types of utilities and are more likely to be members

of the Electric Power Research Institute, the industry-supported collaborative R&D or-

ganization. Of course, there is likely variation even within IOUs. In addition, a publicly

available list of members of this organization does not exist for the period under study

that could be used to create an indicator variable indicating membership.

It is possible that unobserved heterogeneity, in the form of utilities’ abilities to

learn, may be present in the model described. Some utilities, for example, may adopt

smart meters earlier than others because of their superior ability to assess the costs and

benefits of adoption. A selection effect would then ensue that decreases the baseline

hazard rates over time, because utilities that are more susceptible to adopting do so

first thus leaving in the population at risk of adoption those utilities that are not as sus-

ceptible. Neglecting sources of unobserved heterogeneity is known to bias estimates of

baseline hazard rates, the time variables in this case, toward negative duration depen-

dence, but it does not affect the estimates for the included covariates (Heckman and

Singer 1984a, 1984b; Vaupel and Yashin 1985; Nicoletti and Rondinelli 2010). It is pos-

sible to account for unobserved heterogeneity by adding a firm-specific random effect

term to the duration model. Heckman and Singer (1984a, 1984b) show that assumptions

about the distribution of the unobserved heterogeneity term can produce sensitive re-

sults in continuous-time models and develop an alternative nonparametric estimation

method. Land, Nagin, and McCall (2001) extend this analysis to discrete-time models,

but the estimation method becomes considerably more complicated. I find positive pos-

itive duration dependence in model estimates that suggests unobserved heterogeneity

can safely be ignored, though the effect of time could still be underestimated.
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6.6 Empirical Findings

6.6.1 Life Table Estimates

Before presenting the results of the regression analyses, life table estimates for

time until smart meter adoption, defined as an AMI proportion ≥ 0.05, are presented

in Table 8. These estimates are the discrete-time analog of the popular, nonparametric

Kaplan-Meier estimates of hazard and survival rates for continuous-time data (Efron

1988). Life tables describe the distribution of event occurrences and how associated

hazard and survival rates depend on time alone, essentially assuming a homogeneous

sample. Decomposed by ownership types, 56 IOUs, 386 co-ops, and 158 munis adopted

smart meters by the end of 2014. Graphical representations of the hazard and survival

functions are depicted in Figure 12.

Table 8. Life Table Estimates of Hazard and Survival Rates for Smart Meter Adoption.

Year nadopterst nrisksett ĥt se(ĥt) Ŝt se(Ŝt)

2007 30 1805 0.017 0.0030 0.98 0.0030
2008 66 1775 0.037 0.0045 0.95 0.0053
2009 56 1709 0.033 0.0043 0.92 0.0065
2010 91 1653 0.055 0.0056 0.87 0.0080
2011 102 1562 0.065 0.0063 0.81 0.0093
2012 74 1460 0.051 0.0057 0.77 0.0099
2013 138 1386 0.100 0.0080 0.69 0.0109
2014 68 1248 0.054 0.0064 0.65 0.0112

Hazard and survival rates provide an alternative to diffusion curves for describ-

ing diffusion processes and provide more information than simply the level and speed

of processes (Trajtenberg and Yitzhaki 1989). They should be interpreted jointly. While

hazard rates indicate how likely it is to have an event in a given time period, they do

not indicate how many events actually occur. Survival rates provide an estimate of the

magnitude effect of the hazard rate. The specific estimates for each time period are
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less important than the general trend of the values over time. The general trend for the

hazard function is a steady increase over time, though there is a significant reversal in

2014. The magnitudes of the hazards are also quite low. The general trend for the sur-

vival function is a steady rate of adoption over time and also indicates that the median

survival lifetime is beyond eight years. These trends, of course, could change as the

diffusion process proceeds.
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Figure 12. Life Table Estimates of Hazard and Survival Functions for Smart Meter Adoption.
95% confidence intervals shaded in gray.
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6.6.2 Duration Model Estimates

The estimates for discrete-time duration models with differing definitions of

adoption are presented in Table 9. As a whole they suggest multiple determinants of

smart meter diffusion in the United States including supply-side, demand-side, and

environmental factors. Covariates with significant effects that are mostly robust across

models include utility size, utility ownership, adoption of AMR, net metering, state

support for smart meter adoption, and time.

Table 9. Estimation Results for Discrete-Time Duration Models.

Model 1 Model 2 Model 3
AMI prop. > 0 AMI prop. ≥ 0.05 AMI prop. ≥ 0.10

Variable β mfx β mfx β mfx

Constant −6.471∗∗∗ −6.216∗∗∗ −6.093∗∗∗

(0.352) (0.429) (0.436)

Total customers (log) 0.291∗∗∗ 0.016∗∗∗ 0.144∗∗∗ 0.006∗∗∗ 0.123∗∗ 0.005∗∗

(0.036) (0.002) (0.043) (0.002) (0.043) (0.002)

Investor-owned utility −0.177 −0.009 −0.749∗ −0.025∗∗ −0.626 −0.021∗

(0.272) (0.013) (0.339) (0.009) (0.344) (0.010)

Co-operative utility 1.186∗∗∗ 0.071∗∗∗ 1.689∗∗∗ 0.081∗∗∗ 1.782∗∗∗ 0.084∗∗∗

(0.098) (0.007) (0.117) (0.007) (0.119) (0.007)

AMR meter prop. −0.022∗∗∗ −0.001∗∗∗ −0.034∗∗∗ −0.001∗∗∗ −0.036∗∗∗ −0.001∗∗∗

(0.001) (0.0001) (0.002) (0.0001) (0.002) (0.0001)

Demand-side mgmt. −0.787∗ −0.033∗∗ −0.129 −0.005 0.144 0.006
(0.384) (0.012) (0.395) (0.015) (0.359) (0.015)

Net metering 0.530∗∗∗ 0.030∗∗∗ 0.641∗∗∗ 0.028∗∗∗ 0.607∗∗∗ 0.025∗∗∗

(0.102) (0.006) (0.121) (0.006) (0.124) (0.006)

State AMI support 0.516 0.033 1.193∗∗ 0.070∗ 1.234∗∗ 0.070∗

(0.304) (0.023) (0.402) (0.032) (0.409) (0.032)

Wholesale comp. 0.219∗ 0.012∗ 0.137 0.006 0.135 0.005
(0.104) (0.006) (0.125) (0.005) (0.128) (0.005)

Customer choice −0.185 −0.010 0.009 0.0003 −0.046 −0.002
(0.117) (0.006) (0.135) (0.005) (0.138) (0.005)

continued...
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...continued

Model 1 Model 2 Model 3
AMI prop. > 0 AMI prop. ≥ 0.05 AMI prop. ≥ 0.10

Variable β mfx β mfx β mfx

Lost margin recovery −0.060 −0.003 0.482 0.022 0.394 0.017
(0.271) (0.014) (0.333) (0.018) (0.333) (0.016)

Energy eff. stds. −0.151 −0.008 −0.300∗ −0.011∗ −0.357∗ −0.013∗

(0.118) (0.006) (0.148) (0.005) (0.151) (0.005)

2008 0.520∗∗ 0.032∗∗ 1.052∗∗∗ 0.056∗∗∗ 0.919∗∗∗ 0.045∗∗

(0.168) (0.012) (0.225) (0.015) (0.234) (0.014)

2009 0.430∗ 0.026∗ 1.134∗∗∗ 0.062∗∗∗ 1.254∗∗∗ 0.067∗∗∗

(0.183) (0.013) (0.232) (0.016) (0.232) (0.016)

2010 0.982∗∗∗ 0.069∗∗∗ 1.795∗∗∗ 0.114∗∗∗ 1.793∗∗∗ 0.109∗∗∗

(0.171) (0.015) (0.221) (0.020) (0.225) (0.019)

2011 1.314∗∗∗ 0.102∗∗∗ 2.123∗∗∗ 0.147∗∗∗ 2.194∗∗∗ 0.147∗∗∗

(0.170) (0.017) (0.220) (0.022) (0.223) (0.022)

2012 1.051∗∗∗ 0.077∗∗∗ 2.020∗∗∗ 0.140∗∗∗ 2.072∗∗∗ 0.139∗∗∗

(0.186) (0.017) (0.232) (0.023) (0.234) (0.023)

2013 2.096∗∗∗ 0.200∗∗∗ 3.083∗∗∗ 0.268∗∗∗ 3.125∗∗∗ 0.262∗∗∗

(0.177) (0.023) (0.224) (0.028) (0.228) (0.028)

2014 1.843∗∗∗ 0.169∗∗∗ 2.594∗∗∗ 0.209∗∗∗ 2.689∗∗∗ 0.211∗∗∗

(0.208) (0.026) (0.254) (0.030) (0.255) (0.030)

Num. obs. 12, 023 12, 588 12, 662
Log-Likelihood −2, 412.648 −1, 894.583 −1, 830.561
Deviance 4, 825.296 3, 789.166 3, 661.122
Pseudo R2 0.199 0.279 0.293
Likelihood Ratio 950.011∗∗∗ 1, 206.298∗∗∗ 1, 252.988∗∗∗

Notes: Pooled logit models. Averages of individual marginal effects. Clustered standard errors in parenthe-
ses. Significance levels: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

Utility size is positively associated with adoption and the effect is statistically

and economically significant. In contrast, the effect of ownership types is divergent.

Relative to publicly owned utilities, IOUs are less likely to adopt and co-ops are more

likely to adopt. The significance and magnitude of this effect, however, is greater for co-

ops. This most likely owes to the rural nature of co-operative service territories where
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automation of the meter reading process and remote service switching via two-way

communcation is especially beneficial as a result of the large distances among customers.

Additionally, this result could also derive from the customer-oriented perspective of

co-op management. It is somewhat surprising that IOUs are less likely to adopt than

publicly owned utilities given the greater amounts of R&D performed by IOUs. The

effect could perhaps result from the regulatory burden of seeking approval for smart

meter investments that munis do not face (Dedrick et al. 2015). Additionally, having net

metering customers has a modest, positive effect on adopting smart meters.

The estimates for adoption of AMR should be interpreted with some caution be-

cause of the inability to properly capture the exact nature of AMR adoption. The effect

across models is very small but suggests that a vintage effect dominates any learning

effect from prior adoption, thus slowing the diffusion of smart meters. This is not to say

that a learning effect is absent; rather, the vintage effect simply appears to be more sub-

stantial. Because of the opposing influences the small effect should not necessarily be

interpreted as a vintage effect with no practical significance. Vintage effects likely have

greater importance in practice than this estimate suggests. Alternatively, some utilities

have decided to adopt AMR instead of AMI during the period under study, which can

be observed in the data. This raises the issue of potential endogeneity of this variable

and the resulting simultaneity bias if the decision to adopt AMR or AMI is considered

jointly. The issue of choice among competing technologies, vintage effects, and endo-

geneity does not appear to have been addressed in the extant empirical research on

diffusion, and simultaneity would be difficult to address with a discrete-time duration

model using panel data.

State support for smart meter adoption has a positive effect on adoption, al-

though it is not significant in Model 1. This suggests that active state support has been

important for smart meter adoption, either enabling or constraining adoption by IOUs.

The impact of the different electricity market structures across the United States is not
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significant. Neither wholesale competition nor customer choice has a significant effect

on adoption compared to conventionally regulated states. This finding suggests that

time-varying, market-determined wholesale prices do not seem to exert a strong pres-

sure on utilities to adopt smart meters in order to charge time-varying retail prices. In

some cases, though, regulators may actually be limiting the availability of time-varying

rates for retail customers. These combined findings suggest that the regulatory process

is more important than market structure in the decision to adopt smart meters. Nonethe-

less, the two variables may be linked in that regulatory support for smart meters may

also stem from a broader policy goal of liberalizing electricity markets, such as in states

like California and Texas.

The impact of energy efficiency is also not significant. Lost margin recovery

mechanisms do not exert a significant effect and the impact of energy efficiency resource

standards is only weakly significant and not robust across specifications, suggesting that

energy efficiency is not a significant driver of smart meter adoption. The estimates for

energy efficiency resource standards are even negative, although the magnitudes are

modest. It could be that competing investments have taken priority to achieve energy

efficiency targets.

The effect of time on adoption is highly significant with an upward trend re-

flecting an increasing hazard of adoption over time. Figure 13 graphs the estimated

marginal effects for the year indicator variables from Model 2, leaving 2007 as the ref-

erence year. The same marginal effects for the Models 1 and 3 display a similar trend

though the magnitudes are slightly different. After the Recovery Act was signed into

law there is a noticeable upward trend in the hazard after 2009 compared to 2009 and

2008. This finding suggests that smart meters may be too cost-prohibitive for many util-

ities to adopt, even if it may be socially desirable to do so. It may also be the case that

utilities who received funding adopted earlier than they might otherwise have because

of the availability of subsidies, thus increasing the rate of diffusion. Furthermore, there
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is another noticeable upward trend after 2012 when a technology standard related to

interoperability was developed. Some utilities have explicitly stated they have waited to

adopt until certain technology standards have been finalized, such as the interoperabil-

ity standard.
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Figure 13. Estimated Marginal Effects for Year Indicator Variables from Model 2. 95%
confidence intervals shaded in gray. 2007 left as reference year.

These noticeable effects seem to suggest that both the SGIG subsidies and tech-

nology standards have been important determinants for smart meter adoption. It is

also likely, however, that cost reductions and learning have contributed to this general

upward trend. Anecdotal evidence suggests that utilities have been learning the actual

costs and benefits of adopting over time, both from using the technology and through

knowledge spillovers (EPRI 2010). Although there is no way to completely disentan-

gle these effects from one another, the use of year indicator variables in the duration

model provides at least some means to do so but the estimates should be interpreted
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with some caution. Additional evidence is needed to give greater weight to any one of

these effects.

6.6.3 Fractional Response Model Estimates

The estimates for fractional response models are presented in Table 10. I exclude

the demand-side management covariate in order to avoid any potential endogeneity be-

cause smart adoption can enhance these activities. The results of the fractional response

models are similar to the duration model estimates. Covariates with significant effects

that are mostly robust across models include utility size, utility ownership, adoption of

AMR, net metering, state support for smart meter adoption, and time.

Table 10. Estimation Results for Fractional Response Models.

One-Part Model Two-Part Model
Part One Part Two

Variable β mfx β mfx β mfx

Constant −5.971∗∗∗ −6.990∗∗∗ 1.779∗

(0.528) (0.457) (0.697)

Total customers (log) 0.033 0.002 0.325∗∗∗ 0.034∗∗∗ −0.274∗∗∗ −0.032∗∗∗

(0.052) (0.003) (0.047) (0.005) (0.061) (0.007)

Investor-owned utility −0.283 −0.018 −0.140 −0.015 0.166 0.019
(0.424) (0.026) (0.341) (0.036) (0.415) (0.048)

Co-operative utility 2.220∗∗∗ 0.138∗∗∗ 1.366∗∗∗ 0.143∗∗∗ 1.782∗∗∗ 0.206∗∗∗

(0.143) (0.007) (0.123) (0.011) (0.176) (0.020)

AMR meter prop. −0.068∗∗∗ −0.004∗∗∗ −0.029∗∗∗ −0.003∗∗∗ −0.061∗∗∗ −0.007∗∗∗

(0.003) (0.000) (0.002) (0.000) (0.002) (0.000)

Net metering 0.937∗∗∗ 0.058∗∗∗ 0.877∗∗∗ 0.092∗∗∗ 0.165 0.019
(0.131) (0.008) (0.104) (0.011) (0.163) (0.019)

State AMI support 1.338∗∗ 0.083∗∗ 0.535 0.056 0.890∗ 0.103∗

(0.435) (0.027) (0.376) (0.039) (0.394) (0.045)

Wholesale comp. 0.019 0.001 0.114 0.012 −0.328∗ −0.038∗

(0.138) (0.009) (0.120) (0.012) (0.158) (0.018)
continued...
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...continued

One-Part Model Two-Part Model
Part One Part Two

Variable β mfx β mfx β mfx

Customer choice 0.093 0.006 −0.106 −0.011 0.199 0.023
(0.166) (0.010) (0.146) (0.015) (0.201) (0.023)

Lost margin recovery 0.290 0.018 0.234 0.024 0.255 0.029
(0.365) (0.023) (0.317) (0.033) (0.365) (0.042)

Energy eff. stds. −0.383∗ −0.024∗ −0.187 −0.020 −0.207 −0.024
(0.168) (0.010) (0.139) (0.015) (0.190) (0.022)

2008 1.514∗∗∗ 0.094∗∗∗ 1.021∗∗∗ 0.107∗∗∗ 0.404 0.047
(0.174) (0.011) (0.115) (0.012) (0.264) (0.031)

2009 2.211∗∗∗ 0.137∗∗∗ 1.532∗∗∗ 0.160∗∗∗ 0.807∗∗ 0.093∗∗

(0.194) (0.012) (0.128) (0.013) (0.284) (0.033)

2010 2.848∗∗∗ 0.176∗∗∗ 2.067∗∗∗ 0.216∗∗∗ 1.092∗∗∗ 0.126∗∗∗

(0.206) (0.013) (0.135) (0.013) (0.308) (0.035)

2011 3.467∗∗∗ 0.215∗∗∗ 2.561∗∗∗ 0.267∗∗∗ 1.367∗∗∗ 0.158∗∗∗

(0.213) (0.013) (0.145) (0.014) (0.312) (0.036)

2012 3.955∗∗∗ 0.245∗∗∗ 2.881∗∗∗ 0.301∗∗∗ 1.817∗∗∗ 0.210∗∗∗

(0.218) (0.013) (0.151) (0.014) (0.316) (0.036)

2013 4.729∗∗∗ 0.293∗∗∗ 3.469∗∗∗ 0.362∗∗∗ 1.973∗∗∗ 0.228∗∗∗

(0.225) (0.013) (0.160) (0.014) (0.322) (0.037)

2014 5.079∗∗∗ 0.315∗∗∗ 3.755∗∗∗ 0.392∗∗∗ 2.159∗∗∗ 0.249∗∗∗

(0.227) (0.013) (0.165) (0.014) (0.324) (0.037)

Num. obs. 14, 440 14, 440 3, 112
GGOFF (LM) 3.834 89.923∗∗∗ 40.103∗∗∗

P test for one-part vs. two-part model (LM): 0.029

Notes: Pooled logit models. Averages of individual marginal effects. Clustered standard errors in parenthe-
ses. Significance levels: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

The one-part model appears to fit the data better than the two-part model based

on the insignificant P test statistic. Additionally, the logit specification for the one-

part model appears appropriate based on the insignificant generalized goodness-of-

functional form (GGOFF) test statistic. In contrast, for both the binary and fractional

response parts of the two-part model the logit specification appears to not be appropri-
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ate. Alternative specifications using different link functions, however, do not generate

different results for the GGOFF test and the estimates for the parameters and marginal

effects are similar.

The advantage of the two-part model is that it essentially distinguishes between

the interfirm and intrafirm dimensions of adoption and models them jointly. The binary

response part is similar to the discrete-time duration model in modeling interfirm diffu-

sion, except it is estimated with the full panel dataset. The fractional response part only

includes observations with positive values and therefore models the intrafirm dimen-

sion. The most noticeable difference in the estimates between part one and part two of

the two-part model is for utility size, which is positively associated with adopting but

negatively associated with the level of adoption. The estimates for the year indicator

variables also reflect a general upward trend for both the one-part and two-part models.

6.7 Discussion

Duration analysis and fractional response analysis of smart meter adoption in

the United States suggest that policy and regulatory support have positively influenced

adoption and thus the rate and level of smart meter diffusion. This is consistent with the

findings of Zhou and Matisoff (2016), but I also find that utility characteristics and some

combination of learning, cost reductions, and technology standards are important. In

the absence of public policy support for smart meter adoption, it is likely that the rate

and level of smart meter diffusion would be lower than they currently are. The finding

that learning and technology standards have likely been influential is important because

policy has also supported these activities.

The diffusion of new technologies can be affected by a myriad of factors, includ-

ing supply-side, demand-side, and environmental factors. The econometric evidence

presented in this chapter suggests that factors from each category have influenced, with

varying magnitudes, the adoption decisions of utilities with respect to smart meters.

127



The most significant variables for the time period under study, however, appear to be

the policy and regulatory environment and some combination of learning, cost reduc-

tions, and technology standards. At the federal level, the monetary subsidies in the Re-

covery Act’s SGIG program boosted both the level and rate of diffusion by reducing the

costs of adoption. At the state level, policy and regulatory support for smart meters, ei-

ther through technology mandates or the guaranteed cost recovery of AMI investments,

has also had a significant impact on diffusion. The results also suggest that differences

in electricity market structures have not impacted the diffusion of smart meters in a sig-

nificant way; rather, regulation has been a more significant influence, either enabling or

constraining smart meter adoption. There is also an association, however, between state

policy and regulatory support for smart meters and liberalized electricity markets, such

as in California, Texas, Illinois, and Massachusetts. This would suggest that an over-

riding policy goal of increasing competition, customer choice, and the flexibility of the

demand side in electricity markets positively influences smart meter adoption through

policy and regulation, but not necessarily through the structure of markets. Whether or

not this policy support for smart meters has been warranted, or has been implemented

in the best way or at the right time, is another issue.
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CHAPTER VII

SMART METER DIFFUSION POLICIES IN THE UNITED STATES

The empirical findings from the previous chapter have public policy implica-

tions for enhancing the diffusion of smart meters in the United States. In this chapter

I describe and assess existing smart meter diffusion policies in the United States and

present additional empirical investigation of their impacts. Although the econometric

analysis of the previous chapter investigates the effects of smart meter diffusion policies,

it does not explore theories of diffusion policy and rationales for the specific diffusion

policies enacted. The empirical analysis suggests a prominent role for policy in extend-

ing the diffusion of smart meters, which is consistent with previous research (Zhang

2010; Spodniak, Jantunen, and Viljainen 2014; Zhou and Matisoff 2016). Three aspects

of diffusion policy, and public policy in general, frame the discussion in this chapter:

rationale, instruments, and impact. These aspects concern the reasoning and motives for

policy intervention, the methods of intervention, and the consequences of intervention

(Stoneman 2002, 175–177).

7.1 Theories of Diffusion Policy

Theories of technological diffusion lead to theories of diffusion policy, aimed at

identifying if and when public policy may be needed to alter a diffusion process and

the appropriate methods for intervening in a diffusion process. Diffusion policy is typi-

cally oriented toward enhancing the diffusion of a particular technology, but it may also

be oriented toward blocking diffusion. Diffusion policy is a type of technology policy

and should be analyzed in the context of innovation policy more broadly. Two distinct

approaches to diffusion policy exist: neoclassical theories concerned with correcting
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market failures and evolutionary theories concerned with avoiding lock-in to inferior

technology choices. More broadly, the two approaches align with market failure and

system failure approaches to innovation policy. Although these two approaches are

opposed in some ways, they may be viewed as complementary (Bach and Matt 2005;

Lundvall and Borrás 2005; Metcalfe 2005b, 2007; Steinmueller 2010; Bleda and Río 2013;

Pyka 2014; Fagerberg 2016).

The general rationale for innovation policy is the tendency toward underproduc-

tion of scientific and technological knowledge in markets as a result of the uncertainty

of practical outcomes from innovation activities, the inability to fully appropriate the

benefits from innovation activities, and the need to invest in prior knowledge to pro-

duce new knowledge from innovation activities (Nelson 1959; Arrow 1962a). In the

market failure approach, public policy should then promote a socially optimal level of

knowledge production determined by the positive externalities of knowledge. This ap-

proach is concerned more with the generation than the diffusion of knowledge and also

treats knowledge as having public good characteristics. A policy of subsidizing basic

scientific research, as opposed to applied technological research and development, is

more strongly supported by the market failure approach. Because the market failure

argument focuses on static, allocative efficiency, it may neglect dynamic, adaptive effi-

ciency. Additionally, the market failure approach may prove to be an inadequate guide

to practical policy making given the uncertainty and path dependence in innovation

processes that prevents the identification of a socially optimal level of knowledge pro-

duction (Smith 2000; Bach and Matt 2005; Chaminade and Edquist 2006, 2010; Bleda and

Río 2013; Fagerberg 2016).

Perceived inadequacies with the market failure approach to innovation policy,

which focuses on individual firm incentives, led to an innovation systems approach that

recognizes the importance of the connections and interactions among different elements

in an innovation system that function together to generate and diffuse innovations (Free-
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man 1987; Lundvall 1992; Nelson 1993). These elements include firms, research univer-

sities, public laboratories, and other nonmarket institutions that collectively advance

technology. The networks connecting the various elements of an innovation system

facilitate the combining of disparate ideas, diffusion of knowledge, and learning and

adaptation in an open, dynamic environment (Cohendet and Meyer-Krahmer 2005; Pow-

ell and Grodal 2005; Powell and Giannella 2010; Özman 2015). The systems perspective

can be applied at a national, regional, or sectoral level and is also careful to emphasize

historical and institutional specificities that affect economic performance (Edquist 2005;

Metcalfe 2005b, 2007; Soete, Verspagen, and Weel 2010). For economic policy in general,

a systems view orients policy toward creating a supportive institutional environment

for an evolving economic system and thereby transcends the dualistic policy frames of

intervention versus nonintervention (Colander and Kupers 2014).

The ultimate goal of investing in innovation activities is to turn technological

knowledge into economic value. The innovation systems approach can also be distin-

guished from the market failure approach based on the analysis of knowledge. Knowl-

edge is equated to information in the market failure approach whereas knowledge is

distinguished from information in the systems approach. At a general level, knowledge

can be decomposed into codified and tacit dimensions that differentiate between knowl-

edge that is easly communicated and that which is not (Leppälä 2015).

The market failure rationale for innovation policy treats knowledge as a public

good, but this may not necessarily be the case. This results from the treatment of knowl-

edge as information in neoclassical models, such that all knowledge is generic, codified,

easily transferred at low cost, and context independent. Subsequently, knowledge is

viewed as nonrival and nonexclusive and thus creates positive externalities leading to a

market failure in the allocation of resources to knowledge production. While basic scien-

tific knowledge may fit this description of a public good, technological knowledge often

does not as a result of its specificity, tacitness, difficulty to acquire, and context depen-

131



dence. If knowledge is differentiated in these and other ways and dispersed throughout

the economy within heterogeneous people, firms, and other organizations, then knowl-

edge has both public and private characteristics and learning and search processes be-

come more important for understanding innovation processes and formulating policy

(Smith 2000; Metcalfe 2005b, 2007; Chaminade and Edquist 2006, 2010; Lundvall and

Lorenz 2012).

Imperfect knowledge is linked to true uncertainty and bounded rationality in de-

cision making that in turn motivates learning and active search for knowledge. Knowl-

edge is generated and diffused on social and economic networks that help shape knowl-

edge management practices and learning processes, serving as both a cause and a con-

sequence of economic performance (Cohendet and Meyer-Krahmer 2005; Powell and

Grodal 2005; Powell and Giannella 2010; Özman 2015). Viewing knowledge as multidi-

mensional may impact diffusion and policy making through learning processes. Insti-

tutions play an important role in reducing uncertainty and facilitating network connec-

tions. The main policy recommendation in the systems approach is to enrich innovation

networks through which knowledge is generated and diffused. For the diffusion of tech-

nologies, enriching innovation networks can facilitate the diffusion of knowledge about

technologies in both its codified and tacit dimensions. The diffusion of this technolog-

ical knowledge through both centralized and peer-to-peer channels can then influence

adoption decisions.

The systems perspective affects the theory and practice of innovation policy

by expanding the relevant set of policy rationales and instruments, including those re-

lated to education and labor (Edquist 2005; Lundvall and Borrás 2005; Soete, Verspagen,

and Weel 2010; Steinmueller 2010; Fagerberg 2016). In contrast to the market failure

approach, the systems approach to innovation policy is concerned more with institu-

tional and system failures and also recognizes the potential for government failure. The

systems approach is concerned with missing actors, institutions, and associated con-
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nections. Network connectivity also evolves to create new business opportunities and

institutions based on the search processes for solutions to social and economic prob-

lems, so supporting network infrastructure and mobility should be a goal of innovation

policy (Ricard 2015). Although endorsed by many countries, the innovation systems

approach has also been difficult to translate from theory into practice because of its

sometimes unclear concepts and complex depictions of innovation processes that do not

readily generate policy instruments (Smith 2000; Mytelka and Smith 2002; Woolthuis,

Lankhuizen, and Gilsing 2005; Chaminade and Edquist 2006, 2010; Bleda and Río 2013).

Diffusion policy has arguably been understudied in the literature on innovation

policy, even though the impact of technological innovations can only be felt through

their widespread use (Stoneman 2002, 305–306). In practice, diffusion policy is typi-

cally oriented toward increasing the rate of diffusion with the presumption that faster

is better, although theory demonstrates that this is not always the case. Conventional

diffusion policy theory is framed in terms of market failure as a rationale with either

information provision or adoption subsidies as instruments (Stoneman and David 1986;

Stoneman 1987a; Stoneman and Diederen 1994; Caiazza 2015). The market failure ar-

gument for diffusion policy rests on the comparison between the private and social

costs and benefits of technology adoption. Diffusion policy may be warranted if the so-

cially optimal level of technology adoption is not reached in an economy or not reached

fast enough in the absence of policy intervention. This theory can be used to derive

a welfare-optimal diffusion path, but the appropriate policy instrument and timing

depends on the context, such as the state of technological expectations or market struc-

ture (Ireland and Stoneman 1986; Stoneman and David 1986; Stoneman 1987b, 67–79;

Stoneman and Diederen 1994). In contrast to the market failure approach, the systems

approach to diffusion policy as informed by evolutionary thinking focuses on avoiding

inefficiencies as opposed to incentivizing efficiencies. The goal for policy from this per-

spective is to avoid lock-in to an inferior technology and to ensure variety in technology
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choice (Metcalfe 1994a, 1994b, 1995a, 1995b; David 2005, 2007; Pyka 2014). Either ap-

proach is concerned with overcoming barriers to diffusion and achieving certain social

goals (Edler 2010; Caiazza 2015).

Different theoretical perspectives on diffusion can lead to different rationales and

instruments for diffusion policy. Epidemic models of diffusion view information and

learning as the key determinants in diffusion processes and thus produce a relatively

limited set of policy rationales and instruments concerning the provision of informa-

tion. Probit models of diffusion focus on the effects of firm heterogeneity and thus pro-

duce a wider array of policy rationales and instruments related to firm characteristics.

Game theory models also point to the relevance of strategic interaction, and evolution-

ary models emphasize both firm heterogeneity and learning in a continually changing

environment.

Nonlinear models of the innovation process suggest that technology policy

should not focus on diffusion in isolation. Interdependencies between diffusion and

the other stylized stages of the innovation process suggest that technology policies for

invention, commercialization, and diffusion cannot always be separated and should be

considered in tandem and designed to work together synergistically. While integrating

the supply of and demand for innovations in theoretical models enables welfare compar-

isons of diffusion paths, it also complicates policy design. Good policy for R&D may be

bad policy for diffusion, and vice versa. Additionally, policy makers do not necessarily

have the requisite knowledge to determine the welfare-optimal diffusion path (Stone-

man 1987a, 1987b; David 1986; Stoneman and Diederen 1994; Metcalfe 1994a, 1994b,

1995a, 1995b; Hahn and Yu 1999; Geroski 2000; Williams, Stewart, and Slack 2005, 211–

247; Caiazza 2015).

The most common diffusion policy instruments include information provision

and adoption subsidies, but other instruments include demonstration projects, support

of technology standards development, and public procurement. A policy mix with mul-
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tiple instruments may also be needed to ensure widespread diffusion. Furthermore, the

boundaries of diffusion policy may not always be clear. Environmental regulation, for

example, may incentivize the diffusion of certain technologies over others. Additionally,

education policy affects human capital development that can in turn determine what

technologies are used or not used based on the available skillsets and capabilities in an

economy. (David 1986; Stoneman and Diederen 1994; Caiazza 2015).

The use of information provision to stimulate the adoption of new technologies

is premised on the belief that firms may not be aware of new technologies or may not

understand the full costs and benefits of adopting new technologies. The provision of

information aims to reduce this uncertainty through learning and thereby encourage

adoption. Differentiating between information and knowledge, however, implies that

simply providing information to firms may not be enough to encourage adoption. If

there is a considerable tacit dimension to knowledge about using a certain technology,

then the transfer of knowledge becomes more difficult and costly. Information provision

may then have to be combined with subsidies to generate knowledge through learning

by using. Building absorptive capacity for technology adoption is another policy instru-

ment to consider when both learning and firm heterogeneity are taken to be important

determinants in diffusion processes. Absorptive capacity also links generation and diffu-

sion in innovation systems (Wegloop 1995; Goodwin and Johnston 1999). Subsequently,

an information provision policy can be transformed into a more general learning policy,

either passively providing information or actively generating knowledge in uncertain

environments.

Adoption subsidies aim to reduce the costs of adopting new technologies through

financial incentives and enhance their diffusion as a result. Even if some firms may

adopt without such incentives, given firm heterogeneity, subsidies may be needed to

induce further adoption along both the interfirm and intrafirm dimensions. Subsidies

may also be needed to encourage early adoption and generate learning which can then
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feedback to suppliers to improve technologies that can then lead to mass market adop-

tion. The heterogeneity of firms, however, may make it difficult to design an optimal

subsidy (Stoneman and Diederen 1994).

Apart from these more common and direct instruments, the support of technol-

ogy standards development can be considered an important indirect instrument for

diffusion policy. Different types of standards may impact the diffusion of technologies

in different ways. Quality standards, for example, reduce uncertainty as to the perfor-

mance and reliability of a technology. Product standardization can generate economies

of scale in production and thus reduce unit costs. Additionally, interface standards can

alleviate the fear of vendor lock-in. The development of standards can reduce uncer-

tainty and lower costs and thus positively influence technology adoption (David 1987;

David and Greenstein 1990; Tassey 2000, 2015; Blind 2004).

Uncertainty plays an important role in formulating and assessing diffusion poli-

cies. Expectations of the costs and benefits of technology adoption may play an im-

portant role in the formation and impact of diffusion policies (Ireland and Stoneman

1986). This is true for both neoclassical and evolutionary approaches to diffusion policy,

but they differ qualitatively in how expectations of firms are conceived and modeled.

Neoclassical models assume unbounded rationality whereas evolutionary models as-

sume bounded rationality. The distinction is one of decision making under risk versus

uncertainty. From the perspective of ecological rationality, decision making should be

connected to the decision-making environment that is defined in part by the presence

and degree of uncertainty (Lee 2011; Todd and Gigerenzer 2012). Neoclassical views

are more appropriate under conditions of little or no uncertainty whereas evolutionary

views are more appropriate under conditions of true uncertainty.

In neoclassical thought there is, strictly speaking, no uncertainty at all. Any un-

certainty is reduced to risk, where all the possible outcomes of a decision are known

along with their associated probabilities of occurring. When modeling behavior, risk is
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accounted for by attaching probability weights to all possible outcomes in an optimiza-

tion framework. Risk can be distinguished from uncertainty where risk is equated to

known probabilities of known outcomes and uncertainty is equated to unknown prob-

abilities and unknown outcomes (Keynes 1921; Knight 1921). Uncertainty can also be

viewed in a nondualistic framework as composed of varying degrees of uncertainty

(Dow 2015, 2016). Uncertainty may also be termed true, fundamental, radical, or irre-

ducible uncertainty to distinguish it from risk, and it results from imperfect knowledge

of the world because of continual, endogenous change in an open system. Decision mak-

ing in truly uncertain environments is characterized not by optimizing but by satisficing

and heuristics (Lee 2011; Todd and Gigerenzer 2012).

The distinction between risk and uncertainty is important for thinking about

diffusion processes and for policy making aimed at altering diffusion processes. Uncer-

tainty, in contrast to risk, implies limits to knowledge and motivates simpler strategies

for decision making. Uncertainty also implies that policy makers are boundedly rational

and learn with firms together as a diffusion process proceeds. Policy making, therefore,

is necessarily adaptive and interacts and co-evolves with technology as well as the de-

velopment of innovation theory (Metcalfe 1995a, 1995b; Mytelka and Smith 2002; Witt

2003). Uncertainty undermines, to some extent, the market failure rationale for diffusion

policy because it presupposes that policy makers can identify a socially optimal diffu-

sion path. It can be difficult, if not impossible, to ascertain an optimal diffusion path in

an uncertain environment. Welfare comparisons of different diffusion paths can also be

difficult if relevant factors change over time like preferences and the technology itself,

especially if those changes are endogenous (Stoneman 1987a, 1987b).

Because evolutionary perspectives take more seriously the distinction between

risk and uncertainty, evolutionary diffusion policy is concerned less with selecting and

enhancing the diffusion of a particular technology and more with preventing inferior

technologies from becoming locked-in through a path dependent process. From an evo-
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lutionary perspective, uncertainty is inherent in innovation systems and not a market

failure itself. It prevents the identification of a socially optimal diffusion path, limiting

the purview of policy makers. Diffusion policy from an evolutionary perspective seeks

to reduce uncertainty and to ensure a variety of technology is available to be selected

through minimizing switching costs and encouraging experimentation. Strengthening

network ties so that diffusion of knowledge and learning can occur more widely is an-

other policy goal. Additionally, evolutionary policy aims to balance incentives for both

the generation and diffusion of technology (Metcalfe 1994a, 1994b, 1995a, 1995b; David

2005, 2007; Pyka 2014).

7.2 Rationales and Instruments for Smart Meter Diffusion Policies

The rationales and instruments for smart meter diffusion policies can be dis-

cussed within the theoretical frameworks of diffusion policy. The complex distribution

of the costs and benefits of smart meters among different stakeholders, in part resulting

from the complex regulatory and governance structure of the electric power industry

itself, gives rise to many reasons for supporting their diffusion through policy. In par-

ticular, the benefits of smart meters from demand response are primarily social benefits

because reducing peak demand improves reliability of electric power grids and can save

infrastructure costs in the long run. Smart meters can also reduce greenhouse gas emis-

sions through energy efficiency and the integration of renewable energy sources. Along

with barriers to adoption, these isues provide a rationale for public policy support for

smart meter adoption (Zhang 2010; Brown and Zhou 2013; McHenry 2013; Pupillo and

Serre 2013; Katz 2014).

From a market failure perspective, a policy rationale for aiding the diffusion of

smart meters can be made only under certain circumstances. The benefits of smart me-

ters, especially those from enabling time-varying rates, must be compared to the costs.

Only if the social benefits of a higher level of smart meter adoption than occurs in a mar-
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ket exceed the costs of installation can policy support be justified. There is no general

case for subsidizing smart meter diffusion (Doucet and Kleit 2002; Brennan 2004; Römer

et al. 2012). In most cases, the private benefits for utilities from operational efficiencies

are not sufficient to justify smart meter deployments. It is often the case that the bene-

fits obtained from demand response programs are needed to justify such deployment.

Theoretical and empirical studies demonstrate both short-term and long-term benefits

from changes in consumption patterns induced by time-varying pricing. These benefits

result from improved allocative efficiency and asset utilization as well as reductions in

environmental emissions. The level of benefits, however, depend on demand elasticities

and market contexts such as rules, load profiles, and mix of generation sources (Boren-

stein, Jaske, and Rosenfeld 2002; Borenstein 2005a, 2005b; Borenstein and Holland 2005;

Joskow and Tirole 2006; Holland and Mansur 2006, 2008; Ata, Duran, and İşlegen 2016).

The rationales for smart meter diffusion policies in the United States revolve

around a number of complementary objectives including reducing peak demand, em-

powering consumers with consumption data, encouraging energy efficiency, reducing

environmental emissions, and fostering innovation. These policies are typically part of

a broader push for smart grids and should be assessed with this in mind because of the

complementarity of smart grid technologies and policies. Government support of energy

technologies like smart meters can overcome barriers to adoption such as lack of infor-

mation or financial constraints. Given these rationales, policy makers and regulators

have used various instruments to incentivize adoption of smart meters. These include

both adoption subsidies and cost recovery mechanisms and to some extent information

provision. Additionally, smart meter technology standards were developed with the aid

of policy. Specific diffusion policies include the Recovery Act smart grid programs at the

federal level subsidizing smart meters and associated learning and standards develop-

ment as well as active support at the state level through regulatory mechanisms (GAO

2004; NSTC 2011; Weyant 2011; Aldy 2013; Rose 2014; CEA 2016).
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Federal policies supporting the diffusion of smart meters have been motivated

primarily to enhance demand response and energy efficiency but also a means to create

more dynamic retail markets linked with wholesale markets and to spur innovation. Pol-

icy instruments have included a mix of adoption subsidies and information provision as

well as public procurement and support for standards development. The Recovery Act

invested an unprecedented $90 billion in clean energy projects as part of a broader effort

to stabilize the US economy during the Great Recession and to invest in infrastructure

that supports sustainable long-term growth. Apart from the recession, the clean energy

investments in the Recovery Act were motivated by market failures in energy markets

related to environmental impacts, energy security, incentives for innovation, information

provision, and financial constraints (Aldy 2013; Rose 2014; CEA 2016; DOE 2017b).

The clean energy projects in the Recovery Act focused on technology deploy-

ment and embodied the largest form of federal support for the adoption of smart meters

through the Smart Grid Investment Grant program. The SGIG program subsidized

the cost of adopting smart meters by those utilities who applied for and were awarded

monetary grants. The SGIG program clearly emobides the diffusion policy of adoption

subsidies meant to lower the cost of adopting smart meters to incentivize utilities to

adopt. Additionally, a mix of ten investor-owned, municipal, and co-operative utilities

also received funding and assistance to carry out consumer behavior studies related to

time-varying electricity prices as part of their smart meter deployments. The SGIG pro-

gram, then, also embodies the diffusion policy of information provision by generating

knowledge about the actual costs and benefits of adopting. Furthermore, the broader

Recovery Act smart grid program also supported the development of smart meter tech-

nology standards and funded workforce training and development related to smart grid

technologies, activities that have also aided the diffusion of smart meters (Aldy 2013;

Rose 2014; CEA 2016; DOE 2017b).
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State policies, either from legislation or regulatory action, supporting smart me-

ter adoption do not necessarily fit into a market failure argument for diffusion policy.

Given the high levels of regulation in electricity markets, regulation does not simply cor-

rect market failures but actively shapes electricity markets in different ways depending

on the exact nature of regulation. The rationale for economic regulation, however, de-

rives from market failure arguments related to both the natural monopoly characteristics

of electricity distribution and services affected by the public interest, so the rationale for

supporting smart meters and smart grids ultimately results from a duty to protect the

public interest in one or more ways. Therefore, state policies supporting smart meters

are carried out through regulatory instruments.

State policies concerning smart meters have typically been prompted by the pre-

viously described federal efforts at grid modernization. The Energy Policy Act of 2005

requested states to consider implementing time-varying pricing and deploying enabling

technology like smart meters as a means to reduce costs. In addition, state policies have

typically been motivated by similar rationales to the federal policies, including increas-

ing energy efficiency and reducing peak demand to constrain system costs, reducing

operational costs and therefore electricity prices, reducing environmental externalities,

and empowering consumers through consumption data and rate choice. The policies

are typically part of wider smart grid policies that also encourage distributed generation

and net metering. Related policies that protect consumer data have also been imple-

mented (EIA 2011; Urban 2016).

The support for smart meters by states exists on a continuum from passive to

active support. For example, some states simply order utilities to provide smart meters

if requested by a customer, but do not order mass deployments. Only a small number of

states can be considered to have an active program of support for deploying smart me-

ters. In Arizona, California, Connecticut, Illinois, Maine, Massachusetts, Pennsylvania,

Texas, and Vermont, there have been concerted efforts to invest in smart meters as part
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of a wider push for smart grids with a more active state role in transforming electricity

markets. Additionally, these requirements typically specify metering functionality but

not specific hardware. The diffusion of smart meters in these states has been aided by

regulatory instruments such as guaranteed cost recovery of smart meter investments

(EIA 2011).

7.3 Impacts of Smart Meter Diffusion Policies

More than 16 million smart meters were installed for 81 utilities across the coun-

try as a result of the SGIG subsidies. Of the 16 million meters from the SGIG grant,

more than 14.5 million smart meters were deployed to residential consumers, more than

1.6 million meters were deployed to commercial consumers, and the remainder were

deployed to industrial consumers. Figure 14 shows that after the Recovery Act smart

grid programs were implemented the rate and level of smart meter diffusion increased

substantially. Of the 81 utilities awarded grants, only one had previously installed smart

meters, 200 in total. The SGIG grants extended both the interfirm and intrafirm dimen-

sions of smart meter diffusion, amounting to rougly one-third of the overall increase

in smart meter use during the time period of the program. Figure 14 also depicts illus-

trative counterfactuals. The first alternative diffusion path depicted can be considered

as one possible counterfactual, constructed by simply subtracting the 16 million smart

meters contributed by the SGIG. This alternative path, however, does not take into ac-

count the learning generated from SGIG smart meter deployments and the knowledge

spillovers that could have encouraged other utilities to adopt smart meters. The second

alternative path depicts a diffusion path that accounts for the possible lack of learning

(DOE 2015, 2016a, 2016c, 2017b).
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Figure 14. Temporal Pattern of Smart Meter/Advanced Metering Infrastructure (AMI)
Diffusion in the United States with Illustrative Counterfactual Trends in the Absence of Re-
covery Act SGIG Funding, 2007–2014. Observed data from EIA (2017a). First counterfactual
based on data from DOE (2015) subtracted from observed data from EIA (2017a). Second
counterfactual not based on data.

The use of smart meters from the SGIG grants produced many benefits based on

their capabilities. All the meters were capable of interval reads, more than 10.8 million

of the meters were capable of remote connect and disconnect, more than 12.6 million

were capable of outage reporting, and more than 14.5 million were capable of tamper de-

tection. As a result of these and other capabilities, smart meters led to improved restora-

tion times and reduced numbers of customers affected in outage events, improved oper-

ational efficiencies resulting in cost savings, improved customer service and satisfaction,

improved energy efficiency, reductions in peak demand, and reductions in environ-

mental emissions. The SGIG grants also deployed various customer devices, including

10,468 in-home displays, 2,174 energy management systems, 408,188 direct load con-

trol devices, 259,836 programmable controllable thermostats, and 292 smart appliances.
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These devices are coupled with smart meters to manage energy use. The deployment

of smart meters also led more than 417,000 customers to enroll in some form of time-

varying rate program, although this number is small compared to the total number of

smart meters deployed (DOE 2015, 2016a, 2016c).

At the state level, the active support of smart meter adoption has led to high pro-

portions of smart meter use in those states. Figure 15 depicts the level of smart meter

use by state in 2014. Those states that have actively supported smart meter adoption

have seen, unsurprisingly, high proportions of smart meter deployment, such as Ari-

zona, California, Maine, Pennsylvania, Texas, and Vermont. At the same time, other

states without active support have also seen high proportions, such as Alabama, Florida,

Georgia, Idaho, and Nevada. Some of these high proportions have resulted from SGIG

funding. The majority of states without active support, however, do not have high pro-

portions.
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Figure 15. Spatial Pattern of Smart Meter/Advanced Metering Infrastructure (AMI) Diffu-
sion in the United States in 2014. Data from EIA (2017a).

144



Other trends related to smart meter diffusion should be examined to give some

context in assessing the impact of diffusion policies. These trends relate to how smart

meters are actually being used and leveraged to create additional value. Figure 16

shows the aggregate pattern of smart meter diffusion decomposed by customer class.

The growth in smart meter use is primarily a result of its extension to residential con-

sumers. Table 11 presents data from Form EIA-861 on certain aspects of how smart

meters are being used. Data on the total number of smart meters with home area net-

work (HAN) gateways, total number of customers with daily digital access (DDA) to

consumption data, and total number of customers with direct load control (DLC) capa-

bilities were first collected in 2013. These data indicate that the meters are capable of

these functions, but it does not imply that they are actually being used as such.
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Figure 16. Temporal Pattern of Smart Meter/Advanced Metering Infrastructure (AMI)
Diffusion in the United States by Customer Class, 2007–2014. Data from EIA (2017a).
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Table 11. Characteristics of Smart Meter Use.

Year Number of
Meters

Number
of Meters
with HAN

Number of
Customers
with DDA

Number of
Customers
with DLC

2013 53,341,422 1,305,013 30,620,539 3,424,994
2014 58,545,938 2,006,859 35,686,536 3,757,183

Notes: Data from EIA (2017a). HAN = home area network. DDA = daily digital access. DLC = direct load
control.

Figure 17 shows the aggregate pattern of customers enrolled in demand re-

sponse and dynamic pricing programs. More than 9 million customers were enrolled in

demand response programs and more than 6.3 million customers were enrolled in dy-

namic pricing programs in 2014, far below the number of smart meters deployed. Table

12 also shows the number of utilities offering dynamic pricing programs decomposed by

type of pricing. Other impacts of smart meter use related to their social benefits would

be interesting to know, such as improvements in energy efficiency or reductions in peak

demand, but such data in the aggregate are not readily available. Smart meters are also

being used, of course, for operational purposes such as meter reading and outage man-

agement and new uses for them are being discovered (DOE 2016a; IEI 2016a).

Table 12. Number of Utilities Offering Dynamic Pricing Programs.

Year TOU RTP VPP CPP CPR

2013 414 86 16 58 22
2014 490 77 18 67 26

Notes: Data from EIA (2017a). TOU = time of use. RTP = real time pricing. VPP = variable peak pricing.
CPP = critical peak pricing. CPR = critical peak rebates.
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Figure 17. Temporal Pattern of Utility Customers in Demand Response (DR) and Dynamic
Pricing (DP) Programs in the United States, 2007–2014. Data from EIA (2017a).

7.4 Assessing Smart Meter Diffusion Policies

Smart meter diffusion policies should be assessed in the context of the energy in-

novation system and energy and environmental policy in the United States. Systems of

innovation differ substantially at the sectoral level, and even sectors exhibiting high lev-

els of innovation have systems that are organized differently (Malerba 2005). The energy

innovation system is international in scope and consists of a diverse set of actors, net-

works, and institutions engaged in interdependent and uncertain innovation activities.

Relative to other sectors, rates of innovation are slower in energy systems as a result

of the intensiveness and longevity of the capital stock, the need for experimenting and

learning, and the low level of technology clustering and spillovers (Gallagher, Holdren,

and Sagar 2006; Gallagher et al. 2012). Energy policy is intertwined with environmental

policy because of the environmental externalities resulting from the production and con-
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sumption of energy. Energy innovation policy is relevant for the policy mix because of

the role of technological change in both creating and resolving environmental externali-

ties (Jaffe, Newell, and Stavins 2005; Praetorius et al. 2009, 9–43; Popp, Newell, and Jaffe

2010).

Although a systematic comparison of neoclassical and evolutionary approaches

to diffusion policy specifically, as opposed to innovation policy more broadly, has not

yet been attempted, I assess smart meter diffusion policies while keeping both theoret-

ical perspectives in mind. The assessment criteria concerns the strength of the policy

rationale, the appropriate use of policy instruments, and the impact of the policy with

respect to its stated objectives. Clearly, the SGIG subsidies and active state support for

smart meters have increased both the rate and level of smart meter diffusion, but it is

less clear if such policies have been warranted or implemented in the best way. It is

debatable whether the push for smart meters has been an appropriate policy goal or,

alternatively, if the push has been premature.

The most effective smart meter diffusion policies to pursue depend on specific

policy objectives, market contexts, and timing (Zhang 2010; Zhang and Nuttall 2011;

Rixen and Weigand 2014). The main goal of all the smart meter diffusion policies in

the United States has been to enhance the flexibility of the demand side in electricity

markets at times of peak demand through demand response and dynamic pricing pro-

grams. These policies have emphasized large-scale smart meter deployments so that

smart meters are used for residential customers in addition to commercial and indus-

trial customers. Pilot projects, however, have typically preceded mass deployments.

Such a strategy emphasizes a mix of policy instruments where learning is subsidized

first to ascertain the costs and benefits of adoption and then, if found beneficial, finan-

cial incentives of some kind are enacted to facilitate mass deployment. Smart meter

adoption may be beneficial for some utilities but not for others, depending on local con-
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ditions, consumer preferences, and ability of consumers to shift load from on-peak to

off-peak times.

The SGIG program subsidized both adoption costs and learning through match-

ing funds. To be considered for funds a utility was required to submit an application

involving the rationale for adoption, connections to smart grid functions, expected uses,

expected costs and benefits of deployment, a detailed deployment plan, a plan for as-

sessing technology performance, and a plan for further expansion. Grant recipients

were competitively selected based on the merit of the applications. Recipients were also

required to report on activities, progress, and lessons learned throughout deployment

timelines. This knowledge was then aggregated across utilities through case studies and

reporting as a mean to diffuse knowledge to the industry as a whole (DOE 2016a, 2016c,

2017b).

The nature of the SGIG program, through the application process and the match-

ing funds, was arguably well designed in that it led to a self-selection process for utili-

ties that expected smart meters to be profitable investments and integrated into larger

smart grid projects. Because the application required detailed plans, the grant process

ensured that only utilities with thoughtful plans would receive subsidies. Additionally,

because the grants were matching funds, it ensured a certain level of commitment to

using smart meters by leveraging utility funds. The SGIG to some extent also recog-

nized that utilities are different in their characteristics by specifying a generic subsidy

of 50% of program costs as opposed to a set level of funds. The design of the program

accounts for the heterogeneity of utility characteristics by considering the diverse needs,

abilities, costs and capital vintages, and regulatory environments of utilities, empha-

sized in probit and evolutionary theories of diffusion. Those utilities that desired to use

smart meters could apply and potentially receive funding if selected, but those that did

not want to use smart meters were not forced to use them. The requirements, however,

could operate on unobserved heterogeneity in that only utilities that had the capacity to
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apply for funds and comply with the reporting requirements applied for and received

funds. This could have perhaps biased the grants away from smaller utilities who did

not have such capacity, but the program was likely targeted toward larger utilities any-

way.

The SGIG program also invested in learning as a means to reduce uncertainty

about technology performance and encourage continued investment in smart grid tech-

nologies after the program ended. The SGIG program also subsidized learning through

the reporting of lessons learned in smart meter deployments and the consumer behavior

studies that examined the effects of time-varying rates on consumption patterns. The

results from the Sacramento Municipal Utility District study were positive enough to

encourage implementation of default time-of-use rates for residential customers in the

near future, which also influenced the same policy for the state of California as a whole.

Additionally, although the SGIG deployed a relatively small number of customer de-

vices, the behavioral studies showed more demand reduction with such devices. The

SGDP also subsidized learning through smart grid demonstration projects involving

smart meters. Through public-private partnerships with smart grid technology vendors,

these smart grid programs also helped to mature the industry (DOE 2016b, 2016c).

Other aspects of the Recovery Act smart grid programs may be critiqued. It may

be considered odd, for example, to simultaneously subsidize large deployments of smart

meters while funding research into their effects on consumer behavior, because these

effects can be important factors in cost-benefit evaluations. In addition, although the

Recovery Act also provided support for the development of technological standards

and cybersecurity guidelines related to smart meters, it may also be considered odd to

simultaneously subsidize large deployments of smart meters before these important

standards and guidelines are in place. At the same time, SGIG grant recipients were

required to address interoperability, security, and privacy concerns in their smart meter

deployment plans, and the two-way communication function of smart meters allows
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software updates as new standards and security protocols are developed. These cri-

tiques point to a possible tension between the Recovery Act’s goals of macroeconomic

stability in the short-run through “shovel-ready” projects and investment in infrastruc-

ture for long-run growth and technology that is not yet mature (MITEI 2011, 197–234;

Aldy 2013; CEA 2016; DOE 2016b, 2016c).

In critiquing smart meter diffusion policies, the main issues with the market fail-

ure approach is the identification of the socially optimal diffusion path for smart meters.

There has been uncertainty associated with the actual costs and benefits of adoption,

including both the private costs and benefits for utilities and the social costs and bene-

fits for electricity consumers and society as a whole. The costs are mostly up front and

many of the benefits are long-term but not guaranteed, such as those from demand re-

sponse. Although some uncertainty has been reduced over time as smart meters have

been deployed in large numbers across the country, uncertainty persists and has led to

diverging opinions about how beneficial smart meters actually are. The benefits ulti-

mately depend on how smart meters are used, such as for demand response programs

and integration with other smart grid technologies. The social benefits and the privacy

and security costs are difficult to quantify, in part because of these uncertainties. These

complexities prompt a need for regulatory oversight and governance throughout smart

meter deployments (EPRI 2008a; Neenan and Hemphill 2008; NETL 2008; Haney, Ja-

masb, and Pollitt 2009; McHenry 2013; Leiva, Palacios, and Aguado 2016).

There has been pushback from consumer advocates and even some utilities ques-

tioning the cost-benefit evaluations. Some of this pushback from residential consumers

has related to the perceived negative health effects of wireless transmission of consump-

tion data from smart meters, and this has led to fee-based opt-out programs in some

states for consumers who do not want smart meters installed on their homes. Addition-

ally, the lifespan of smart meters is expected to be 10–15 years with potential for obso-

lescence as the technology changes and improves, which could impose additional costs.
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The more forceful arguments against smart meters, however, relate to a general lack of

consumer interest in smart meters and time-varying rate programs. Because subscrip-

tions to time-varying rate programs have not diffused nearly as widely as have smart

meters, many of the benefits associated with demand response that have been used to

justify deployments have not yet been realized in most cases. These benefits are often

necessary to return positive net benefits (EEI 2006b, 2006a; Neenan and Hemphill 2008;

Haney, Jamasb, and Pollitt 2009; Faruqui, Harris, and Hledik 2010; IEE 2011; MITEI

2011, 132–137; Cook et al. 2012).

After the large deployments of smart meters in Texas, in 2013 only 0.8% of cus-

tomers with smart meters had accessed the Smart Meters Texas web portal to view their

consumption data and only 0.2% of customers had connected their smart meters to

some kind of automation device like a smart thermostat. This apparent lack of interest

may result from lack of funds and emphasis on customer education and engagement

concerning smart meters. Ease of access to smart meter data and market design may

also be important factors (SPEER 2014). Other states found that large-scale deployments

of smart meters were not cost-effective. Such analysis and critiques have even found

their way into the popular press regionally (Galbraith 2012; Starkman 2013; Turkel 2015;

Finnerty 2016) and nationally (Smith 2009; Wald 2009, 2014; Vergano 2011; Chediak 2012;

Guerrini 2014; Mooney 2015). To some extent, this uncertainty also likely reflects that

the benefits from demand response vary in different contexts, as a result of climate and

load profiles or the generation mix, for example. Dynamic pricing may not necessarily

have environmental improvements, and flatenning peak demand may increase depen-

dence on fossil-fueled baseload generation (Holland and Mansur 2008; Ata, Duran, and

İşlegen 2016). Policy support, then, may be suitable in some areas but not others.

The benefits of smart meters from demand response seem to be more uncertain

than initially thought, resting on the uncertain behavior of consumers. A major part of

the uncertainty in demand response benefits surrounds the debate as to whether or not
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residential consumers have sizable enough loads to reduce during peak demand, re-

spond to dynamic pricing, or are interested enough in such programs. Because the ben-

efits from demand response are typically necessary to make smart meters cost-effective,

the behavioral research on consumer response to smart meter consumption feedback

and time-varying pricing is important to consider. While much of the behavioral re-

search finds that consumers do respond to dynamic pricing by shifting consumption,

this research has often suffered experimental design problems such as small samples

and self-selection bias (Davis et al. 2013). The level of peak demand and overall energy

reductions has declined in studies over time as a result of better design (Torriti 2016,

61–82).

The consumer behavior studies that were part of certain SGIG smart meter de-

ployments were an attempt to provide a more rigorous design through randomized and

controlled trials to assess demand reductions. All studies relied on opt-in programs and

two also compared results to opt-out programs. The key findings from these studies

were that opt-out programs maintained higher enrollments but lower peak demand

reductions than opt-in programs, automated control technologies led to more peak de-

mand reductions than in their absence and were cost-effective, consumers were largely

not interested in in-home displays, and demand reductions depended on the on-peak to

off-peak price ratios. Additionally, continual engagement was found to be necessary to

maintain customer interest in the long-term (DOE 2016b). These findings are consistent

with other research, which also highlight the limitations and unintended consequences

of consumption feedback (Hargreaves, Nye, and Burgess 2013; Buchanan, Russo, and

Anderson 2014, 2015).

These findings collectively suggest that the benefits attributed to smart meters

from demand response may be lower and the costs higher than anticipated, potentially

calling into question the cost-effectiveness of deploying smart meters to most or all

residential consumers if the operational benefits to utilities are not sufficient. This is es-
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pecially true if the majority of the benefits from demand response come from a minority

of customers. Emphasizing residential customers is important because, as depicted in

Figure 16, the growth of smart meter use results from expanding their use to residential

customers. This imposes substantial costs compared to only industrial and commer-

cial customers. There are also concerns about the ability of some consumers to respond

to dynamic pricing, raising the issue of fairness. It is likely true, however, that even

customers who do not particpate in dynamic pricing programs can benefit from the

positive externalities generated by those customers who do participate, reducing peak

demand and therefore the associated avoided costs. These concerns can be overcome

with proper design of dynamic pricing programs and customer engagement, taking into

account the complex distribution of costs and benefits (Borenstein, Jaske, and Rosenfeld

2002; GAO 2004; Alexander 2010; Brand 2010; Faruqui 2010; Felder 2010; Hanser 2010;

Hogan 2010; Levinson 2010; Faruqui and Palmer 2011; Léautier 2014).

The lack of residential consumer interest in demand response and dynamic pric-

ing programs could also be a failure to effectively engage customers or coordinate poli-

cies. This has arguably been the experience in Texas (SPEER 2014) and elsewhere (Mur-

ray and Hawley 2016). Customer engagement can ensure that smart meter deployments

and demand response programs are both fair and effective and targeted to those who

are willing and able to participate (Honebein, Cammarano, and Donnelly 2009; Alexan-

der 2010; Brand 2010; Honebein 2010). The deployment of smart meters has largely not

been matched with the adoption of time-varying rates, despite a long history of inter-

est and countless pilot projects in the industry. This is starting to improve, however, as

California and Massachussets are set to adopt time-of-use rates for residential customers

as the default rate in the near future. Additionally, complementary policies related to

customer choice and the adoption of data privacy and sharing programs like the Green

Button Initiative are also relevant (SPEER 2014; Lazar and Gonzalez 2015).
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Another interesting issue is the potential for leveraging existing AMR meters

for dynamic pricing. One SGDP pilot project investigated the possibilities and found

that it was technically possible to use AMR meters for such purposes at a substantially

lower cost compared to AMI meters. They were found to not always be reliable, but im-

provements in technology have overcome the issues encountered. The communication

system and meter data management system components of AMI were found likely to

be needed to effectively enable dynamic pricing on a wide scale. The communication

system may also be used for other smart grid purposes, which AMR could not provide.

Additionally, the project found loss of interest in dynamic pricing programs over time.

Therefore, AMR-enabled demand response programs would only be useful for inter-

ested customers who could be expected to reduce their on-peak consumption (Navigant

Consulting 2014).

On the cost side, there are also uncertainties related to smart meter standards,

data privacy, and cybersecurity. Some utilities adopted smart meters prior to the devel-

opment of key standards, like interoperability, and therefore incurred either reduced

benefits from limited capabilities or increased costs to replace meters. Smart meter data

can reveal detailed information on household activities, raising concerns of surveillance

and targeted home invasion. Because the data is typically transmitted wirelessly to a

utility, the data can potentially be intercepted by an unauthorized third party. Data

can also be intercepted through unauthorized physical access to the meter. There has

also been ambiguity as to who owns smart meter data, posing legal issues. In addition,

unauthorized access to smart meter software can allow a third party to manipulate data

records and send false information to grid operators. Although there has been policy

action around these issues, privacy and security measures have not kept up with the

pace of smart meter deployments and the smart grid as a whole (CRS 2011, 2012; GAO

2011; Makovich 2011; Urban 2016).
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Policy that supports a technology too soon is one of the concerns of evolutionary

perspectives on technology diffusion. Such support may lock-in technology choices to

an inferior technology. For smart meters, the idea of avoiding evolutionary inefficiencies

is not immediately applicable because smart meters are capable of performing the same

functions as the prior AMR meters. These competing metering technologies are not dis-

tinct in that sense. There is not necessarily a possibility of industry-wide lock-in, but

individual utilities can be locked-in for a time because smart meters are long-lasting cap-

ital investments. The issue here, then, is unnecessary costs, including the opportunity

cost of investment funds, if smart meters are not as beneficial as hoped.

The issues raised here suggest that the push for smart meters has been too fast.

In the push for smart grids, too much attention appears to have been given to the ben-

efits and not enough to the costs, and many of the proclaimed benefits have not yet

materialized. Consumers appear not to be interested enough in demand response pro-

grams and will not necessarily benefit from smart grid technologies in the short-run,

and there may be cheaper technical alternatives to smart meters for those who are. Ad-

ditionally, cybersecurity and privacy concerns have not been adequately addressed. The

deployment of smart meters and smart grid technologies has arguably been too fast at

the level seen because of still evolving technology. Some states like Pennsylvania and

Connecticut, however, in pushing for smart meters have been flexible in deployment

timelines by requiring a certain level of deployment within 10–15 years that takes ac-

count of learning as well as vintage effects. The smart grid should be a more gradual

evolution of the electric power industry where concern is taken to understand the im-

plications of smart grid technology, and consequently public policy should be more

cautious (Brennan 2004; Levinson 2010; Makovich 2011; Blumsack and Fernandez 2012;

McHenry 2013). Additionally, these issues highlight that the market failure approach to

diffusion policy is difficult to implement in practice when technology diffusion is a re-

sult of supply and demand interactions and when the technology is changing over time.
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They also highlight the need for diffusion theory and the theory of diffusion policy to

consider complementary technology use.

If the push for smart meters has been too fast because of uncertain costs and

benefits, then this suggests that smart meter diffusion policies should have put more

emphasis on learning before committing to large deployments with the aid of adoption

subsidies. Diffusion policies oriented toward learning about the costs and benefits of

smart grid technologies should lead to more rigorous and better designed pilot projects,

helping to reduce uncertainty. From a systems perspective, policy could also support the

absorptive capacity of utilities related to technology adoption and encourage learning

networks for knowledge diffusion. The absence of absorptive capacity and learning net-

works can be barriers to knowledge, thus impeding the effective adoption of technology

(Kelley and Brooks 1991; Attewell 1992; Williams, Stewart, and Slack 2005). Policy aimed

at absorptive capacity could provide support to the legacy Electric Power Research In-

stitute or to alternative institutions, accounting for the diversity of utility characteristics,

needs, and market environments.

Because R&D is also linked to learning on both the supply and demand sides

of new technology, an integrated policy design that connects and balances generation

and diffusion is also needed in the electric power industry as grid modernization pro-

ceeds (Sagar and Zwaan 2006; Weiss and Bonvillian 2009; Sivaram 2017). R&D and

learning-by-doing on the supply side improve the supply of new technology, and R&D

and learning-by-using on the demand side improve the demand for new technology.

Discussions of research, development, demonstration, and deployment (RDD&D), how-

ever, are not uncommon in the energy industry, reflecting at least some understanding

of the connections between traditional R&D and diffusion. In the electric power industry

specifically, utilities perform relatively little R&D compared to equipment suppliers and

other industries. The liberalization of electricity markets has also reduced R&D activities

by utilities. Policy is needed to reverse this trend in order to solve the challenges of grid
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modernization, climate change, and other policy goals while taking into account the na-

ture and variety of market structures and regulation (Jamasb and Pollitt 2008, 2011, 2015;

Sanyal and Cohen 2009; Sanyal and Ghosh 2013). The nature of regulation may also

need to change to accomodate new technologies (Kiesling 2009; Praetorius et al. 2009;

Costello 2012; Costello 2016a, 2016b; Römer et al. 2012; Schiavo et al. 2013; Katz 2014;

MITEI 2016; Shomali and Pinkse 2016). Further research and data collection is needed

to analyze the actors, institutions, and networks in the innovation system of the electric

power industry, and the energy sector more broadly, in order to inform policy making in

this area (Sagar and Holdren 2002; Gallagher, Holdren, and Sagar 2006; Gallagher et al.

2012).
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CHAPTER VIII

CONCLUSION

The analysis in this dissertation concerns the early diffusion of smart electricity

meters in the United States. Public policy and regulation have supported the adoption

of smart meters by utilities in the United States, principally as a means to foster demand

response in electricity markets. Using a panel dataset and econometric models, I ana-

lyzed the determinants of the early diffusion of smart meters in the US electric power

industry. These models were informed by theories of technological diffusion as well

as the history and institutional context of the electric power industry. In addition, I as-

sessed smart meter diffusion policies in the United States as informed by theories of

diffusion policy.

8.1 Key Findings

The key findings of the empirical analysis in this dissertation include the impor-

tance of policy and regulation, utility characteristics like size, ownership, and capital

vintages, as well as some combination of learning, cost reductions, and technology stan-

dards as determinants in the diffusion of smart meters. These findings were consistent

across the interfirm and intrafirm dimensions of adoption, implying that decisions to

adopt and at what level to adopt have been considered jointly by utilities and deter-

mined by the same set of factors. In the absence of public policy support for smart me-

ter adoption, it is likely that the rate and level of smart meter diffusion would be lower

than has occurred. This finding is consistent with previous research (Zhou and Matisoff

2016), but I also find that utility characteristics and some combination of learning, cost

reductions, and technology standards are important determinants.
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Public policy support for smart meter diffusion, at both the state and federal

levels, is primarily based on the desire to enhance demand response activities in electric-

ity markets and to deploy an initial technological foundation for smart grids. Whether

or not policy support for smart meters has been warranted, or has been implemented

in the best way or at the right time, is another issue to consider. Although there is a

rationale for smart meter diffusion policies, based on the social benefits from demand

response, they are not generalizable. Some utilities or regions may benefit more from

smart meters than others. The timing of diffusion policies is especially important to

consider. A reasonable argument can be made that some smart meter diffusion poli-

cies, in the form of state policy or regulatory support as well as the Recovery Act SGIG

subsidies, were premature. The costs and benefits of smart meter adoption have been

more uncertain than initially thought, and a substantial level of smart meter adoption

occurred before the development of important technology standards related to cyberse-

curity and interoperability.

The analysis covered in this dissertation concerned the time period 2007–2014. In

2015 and 2016 there were reported slowdowns in smart meter deployments, based on

utility deployment announcements, that have been attributed to the end of the Recovery

Act funds. The diffusion of smart meters appears to be growing again, however, as ma-

jor utility deployments begin in states like New York and Massachusetts that have not

yet adopted at extensive levels. It is predicted that smart meters will grow to 90 million

meters in 2020, roughly 70% of the electricity metering stock in the United States (IEI

2016a).

8.2 International Comparisons

The diffusion of smart meters varies across countries. The United States has not

adopted smart meters as quickly as other developed countries. Some of the major users

of smart meters globally include Italy, Sweden, Finland, the United Kingdom, Germany,
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Ontario (Canada), and Victoria (Australia). Italy was an early adopter of smart meters

and ran into technical problems as a result, increasing the cost of adoption. In contrast,

Germany chose to focus on renewable generation of electricity instead and is now be-

ginning to deploy smart meters, in part because of lessons learned about the constraints

on the power grid from intermittent generation sources for which smart meters can

help. The United Kingdom, Canada, and Australia have also seen pushback against

government-led smart meter deployments similar to that experienced in the United

States. Public policy has aided the diffusion of smart meters in many of these countries,

although different instruments have been used to varying success (Haney, Jamasb, and

Pollitt 2009; Zhang 2010; Brown and Zhou 2013). In Europe, after a push from the Eu-

ropean Commission in 2009 to deploy smart meters, mass deployments were found to

be cost-effective in the majority of European Union member countries and large scale

deployments then commenced. It is predicted that more than 200 million meters will be

deployed in Europe by 2020, roughly 72% of the electricity metering stock in Europe (EC

2014).

8.3 Future Research

Future research related to the topic of this dissertation could cover a number of

areas. The econometric evidence presented here could be complemented with evidence

from case studies, in-depth interviews, and mixed-method studies in order to gain a

better understanding of the decision-making processes within utilities with respect to

metering technology adoption and technology choice more generally (Metcalfe and

Boden 2003; Preece 1995; Tidd 2010b; Dedrick et al. 2015). Qualitative research would

be especially informative for how the interaction between investor-owned utilities and

the regulatory process influences technology adoption decisions. Understanding the

specific reasons why smart meters are being adopted or not adopted, beyond a vague

profitability explanation, would give new insight into the subjective aspects of utility
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management, changing utility business models, and utility strategy, particularly with

respect to grid modernization. Detailed knowledge of how and why technology choices

are made within utilities can also aid the construction and implementation of diffusion

policies. Moreover, the specific ways in which smart meters are actually being used, as

well as the variation in this use among utilities, would also be useful in assessing the

actual benefits of smart meters and their impact on productivity (EPRI 2013). Additional

evidence from such research would help triangulate the relative impacts of learning,

cost reductions, and technology standards on the diffusion of smart meters that could

not be separated in the econometric methods of this dissertation. Other research could

examine the complementary adoption of smart grid technologies. Because the adoption

of technologies is in part creative, requires adaptation, and is influenced by firm strategy

(Attewell 1992; Antonelli 2006), adoption decisions can often be complementary and

path dependent as a result of the cumulative nature of the knowledge base within firms

(Colombo and Mosconi 1995; Arvanitis and Hollenstein 2001).

In general, regulation can impact innovation activities and therefore regulation

can also be an instrument of innovation policy (Blind 2010). State policy and regulation

was found to be an important determinant in smart meter diffusion, so the interaction

between the regulatory process and technological change in the electric power industry

should receive more attention in research. Technological change is important because it

enables new value creation opportunities and associated markets. Because smart meters

and other smart grid technologies reduce the transaction costs associated with buying

and selling electricity in real time, dynamic retail markets can emerge that are more

closely integrated with wholesale markets. Smart grid technologies and dynamic retail

markets combined with advancement in distributed generation and storage technologies

could even lead to decentralized coordination of electricity markets. Radical technolog-

ical change in the industry, however, is hampered by customer, utility, and regulatory

inertia, resulting in a status quo bias. Investments in smart grid technologies that re-
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duce capital and operational costs require a different set of regulatory instruments to

incentivize adoption, especially when the costs are upfront and the benefits are realized

in the long term. The industry itself has also recongized that the regulatory model is

in need of change. The conventional cost-of-service regulatory model as informed by a

static view of markets from neoclassical economics could be complemented by an alter-

native regulatory model informed by a more dynamic view of markets from evolution-

ary economics. An evolutionary perspective would aim to reorient regulation toward

a more adaptive mindset in a constantly changing technology space. Additionally, the

coordination of policies at different levels of government and across related issues is

important to consider (Munson and Kaarsberg 1998; Hirsh and Sovacool 2006; Kiesling

2009; Praetorius et al. 2009; MITEI 2011, 2016; NSTC 2011; Römer et al. 2012; Brown and

Zhou 2013; Schiavo et al. 2013; McHenry 2013; Katz 2014; Marques, Bento, and Costa

2014; Guo, Bond, and Narayanan 2015; Zhou and Matisoff 2016).

Future research could also include analysis of the nature of innovation in the

electric power industry, both from a technological and institutional perspective. Smart

grids can be considered a technological paradigm in which the industry focuses its in-

novative efforts to solve problems, but there are competing visions, or technological

trajectories, of where and how smart grid technology should be developed (Dosi 1982).

The concepts of the supergrid and transactive energy can be considered two such trajec-

tories on opposing extremes. States differ in their specific goals and visions for shaping

electricity markets and comparative institutional analyses would be helpful in under-

standing directions of technological change. The shaping of electricity markets can be

interpreted within the conceptual framework of public sector entrepreneurship (Ley-

den and Link 2015), and future research should investigate the implications of this for

technological change in the electric power industry. More research could address the

relationships among market structure and regulation and innovative capacity. Addition-

ally, studies of the quantity and quality of R&D in the industry as well as the energy
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innovation system as a whole would also be informative. Such analyses could help un-

derstand barriers to innovation, predict the direction of technical change, and reveal the

institutions and policies that influence paths of innovation toward certain desired ends

(Gallagher, Holdren, and Sagar 2006; Kiesling 2009; Praetorius et al. 2009; Gallagher et al.

2012).

The future of the electric grid in the United States is in flux and will likely change

in different regions and at different times. Information and communication technolo-

gies, like smart meters, are at the heart of this change by enabling new capabilities and

thereby new markets. They will continue to play a pivotal role in shaping the rate and

direction of technical change in the electric power industry.
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