

INTRO TO LINEAR PROGRAMMING
 (LP)

Prof. Luana Medeiros Marangon Lima, Ph.D.

To express a problem in terms of mathematical programming you need:

1. An objective (what to optimize)
2. Alternative actions
3. Limited resources
4. Variables need to be related
5. It needs to be possible to express 1, 2, and 3 in mathematical language through equations or inequalities

Example:

A production plant manufactures two types of water heaters (type $1 \& 2$). Find the production schedule (number of units type 1 and 2 to be manufactured) that maximizes profits.
\square profits for selling type $1=\$ 800$, per unit
\square profits for selling type $2=\$ 600$, per unit
\square Both types need to be processed in two different machines in any order

- Type 1 requires:
- 4 hours of processing in machine A
- 2 hours in machine B
- Type 2 requires:
- 2 hours in machine A
- 4 hours in machine B
- There is a limited number of processing hours available at each machine
- 60 hours for machine A
- 48 hours for machine B

What do we want to optimize?

\square We want to maximize profits!!

What are the limited resources?

\square The time of machines A and B

What do we need to decide?

\square How many units of water heater type I and type II

Solution

\square Graphically
\square Algebraically
\square Computer software

Graphical method

1. Formulate problem
2. Construct a graph and plot constraint lines
3. Determine feasible region
4. Find optimal solution

- Calculate value of objective function for all corners and choose optimal

Or

- Plot two objective function lines to determine direction of improvement. Choose corner and calculate value of objective function

Step 1: Formulating the problem

1. Identify decision variables and objective function. Name your variables
z: profits
x_{1} : number of units of water heater type 1 to produce
x_{2} : number of units of water heater type 2 to produce
2. Write equation for objective function

$$
\max _{x_{1}, x_{2}} z=\$ 800 x_{1}+\$ 600 x_{2}
$$

Very important

\square We will formulate this optimization problem as one of linear programming (LP)
\square This means that
\square Our decision variables will be represent by linear relationships
\square And we assume that the decision variables can be any positive real number

Formulating the problem

1. Identify decision variables and objective function. Name your variables
2. Write equation for objective function
3. Identify constraints

- Constraint 1: Cannot use more than the available hours at machine A
- Constraint 2: Cannot use more than the available hours at machine B

4. Write equations to represent constraints

Equation stating we cannot use more than the available hours for Machine A

Formulating the problem

1. Identify decision variables and objective function. Name your variables
2. Write equation for objective function
3. Identify constraints

- Constraint 1: Cannot use more than the available hours at machine A
- Constraint 2: Cannot use more than the available hours at machine B

Write equations to represent constraints

- C1: $\quad 4 x_{1}+2 x_{2} \leq 60$
- C2: $\quad 2 x_{1}+4 x_{2} \leq 48$

Formulating the problem

1. Identify decision variables and objective function. Name your variables
2. Write equation for objective function

Identify constraints
Write equations to represent constraints
5. Write the non-negativity constraint

- C3: $x_{1}, x_{2} \geq 0$

Final LP Formulation

\square Maximizing profits in the water heaters' production plant

$$
\begin{array}{cc}
\max _{x_{1}, x_{2}} & z=\$ 800 x_{1}+\$ 600 x_{2} \\
\text { s.t. } & 4 x_{1}+2 x_{2} \leq 60 \\
& 2 x_{1}+4 x_{2} \leq 48 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

\square where

Z: profits
x_{1} : number of units of water heater type 1 to produce
x_{2} : number of units of water heater type 2 to produce

Understanding the Notation

General Formulation

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2} \leq b_{2} \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

$$
z=c_{1} x_{1}+c_{2} x_{2}
$$

x_{1}, x_{2}
max
s.t.
\square where

Right
hand side

Z: profits
x_{1} : number of units of water heater type 1 to produce
x_{2} : number of units of water heater type 2 to produce

Graphical method

2. Construct a graph and plot constraint lines
3. Determine feasible region

Find optimal solution

- Calculate value of objective function for all corners and choose optimal

Or

- Plot two objective function lines to determine direction of improvement. Choose corner and calculate value of objective function

Step 2: Construct a graph and plot constraint lines

\square Construct a graph:
\square Let the x axis represent your first decision variable and the y axis the other decision variable
\square Plot constraint lines

- Transform constraint equations into equalities

$$
\begin{gathered}
4 x_{1}+2 x_{2}=60 \\
2 x_{1}+4 x_{2}=48 \\
x_{1}, x_{2}=0
\end{gathered}
$$

\square Find the intersection points with the x, y axes. For each constraint line ask:

- What is the value of x_{1} when x_{2} is 0
- What is the value of x_{2} when x_{1} is 0

Graphically: Plot constraints

Graphical method

Find optimal solution

- Calculate value of objective function for all corners and choose optimal

Or

- Plot two objective function lines to determine direction of improvement. Choose corner and calculate value of objective function

Step 3: Determine Feasible Region

\square Determine the feasible (valid) side of each constraint line
\square Feasible region is the area of the graph valid for all constraints
\square Since the solution needs to meet all constraints \rightarrow the solution is in the feasible region

Determine Feasible Region

Determine Feasible Region

Determine Feasible Region

Graphical method

1. Formulate problem
2. Construct a graph and plot constraint lines
3. Determine feasible region
4. Find optimal solution

- Calculate value of objective function for all corners and choose optimal

Or

- Plot two objective function lines to determine direction of improvement. Choose corner and calculate value of objective function

Step 4: Find optimal solution

\square Locate extreme points in the feasible region
\square Calculate objective function for all corners

Find Corner Points

How de we find the intersection point?

Find Corner Points

 X2Need to find intersection of the two constraint lines:

$$
\begin{aligned}
& 4 x_{1}+2 x_{2}=60 \\
& 2 x_{1}+4 x_{2}=48
\end{aligned}
$$

1. Multiply eq 2 by -2 and add to eq 1
2. Solve resulting equation for X 2
3. Plug value of $X 2$ in either equation
4. Find value of X 1
$(12,6)$
(?,?)
Red: Corner points of feasible region
$(15,0) \quad(24,0) \quad$ Constraint 2

Calculate objective function for all red

 corners| Feasible
 Solutions:
 (X1,X2) | Hours used | | Profits (Z) |
| :--- | :--- | :--- | :--- |
| | Machine A
 $=4 X 1+2 X 2$ | Machine B
 =2X1+4X2 | |
| $(0,0)$ | 0 | 0 | 0 |
| $(0,12)$ | $2^{*} 12=24$ | $4^{*} 12=48$ | $\$ 600^{*} 12=\$ 7,200$ |
| $(15,0)$ | $4^{*} 15=60$ | $2^{*} 1=30$ | $\$ 800^{*} 15=\$ 12,000$ |
| $(12,6)$ | $4^{*} 12+2^{*} 6=60$ | $2^{*} 12+4^{*} 6=48$ | $\$ 800^{*} 12+\$ 600^{*} 6=\$ 13,200$ |
| | | | |

Graphical method

1. Formulate problem
2. Construct a graph and plot constraint lines
3. Determine feasible region
4. Find optimal solution

- Calculate value of objective function for all corners and choose optimal

Or

- Plot two objective function isolines to determine direction of improvement. Choose corner and calculate value of objective function

Alternative to evaluating Z at all corner points: Plot objective function and see direction of improvement

LP concepts

\square Feasible region
\square Feasible solution
\square Objective function
\square Decision variables
\square Constraint (binding and non binding)

LP assumptions

\square Proportionality: Contribution to costs (or profits) of a variable is linear. No returns to scale/economies of scale
\square Additivity: Total cost is sum of individual cost
\square Divisibility: Decision variables can be divided into fractional levels (e.g. can make 5.2 water heaters)
\square Deterministic: The cost coefficients, technical coefficients and RHS are all known deterministically

THANK YOU !

